
Decentralized Advice

Timothy Feddersen∗ Ronen Gradwohl†

Abstract

We compare the amount of information credibly transmitted by

cheap talk when information is centralized to one sender and when it

is decentralized, with each of several senders holding a distinct but in-

terdependent piece. Under centralization, full information transmission

is typically impossible. Under decentralization, however, the number of

receivers is decisive: decentralized communication with one receiver is

completely uninformative, but decentralized communication with mul-

tiple receivers can be fully informative. We analyze the extent of such

fully-informative communication, and apply our results to the issue of

transparency in advisory committees.

1 Introduction

The cheap-talk model and its many variants have served as workhorse models

of communication across the social sciences, from political science to lingis-

tics.1 In the standard model a sender has private information that is decision
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1See Battaglini (2002) for references in political science, finance, and macroeconomics.
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relevant for a receiver. The sender chooses a message from a set of available

messages, and the receiver, who observes this message, makes a decision that

determines both agents’ payoffs. Communication is called cheap talk if the

set of available messages does not depend on the sender’s information, and if

his choice of message does not directly influence payoffs. The central ques-

tion in the cheap talk literature is, how much information can be credibly

communicated?

One main conclusion is that, unless sender and receiver preferences are suf-

ficiently aligned, it is not possible to credibly communicate all the information.

There are two well-known exceptions: when there is one sender communicat-

ing with multiple receivers (Farrell and Gibbons, 1989), and when there are

multiple senders with different preferences and perfect information about a

multidimensional state, communicating with one receiver (Battaglini, 2002).2

In this paper we show that a third case exists: when there are multiple senders

with common values and multiple receivers with different preferences.

The motivating application of this paper is focused on information trans-

mission from advisory committees to decision makers and, in particular, on

whether or not transparency requirements can facilitate information trans-

mission. There is a large literature examining the costs and benefits of trans-

parency in agency relationships,3 and recent studies have demonstrated a clear

cost to transparency in terms of its effect on information aggregation (Fehrler

and Hughes, 2018; Gradwohl and Feddersen, 2018). Modeling the members

of the advisory committee as senders we show conditions under which such

transparent committees can fully reveal information even when preferences

between committee members and decision makers are quite different. Thus,

our formal analysis provides a rationale for mandated transparency in advisory

2There are additional examples in somewhat different settings, e.g., when information
is certifiable (Mathis, 2008; Hagenbach et al., 2014) and when communication is dynamic
(Renault et al., 2013; Golosov et al., 2014; Margaria and Smolin, 2018).

3This literature typically studies senders with career concerns—see Prat (2005) and
Malesky et al. (2012) for extensive reviews on the literatures in political science and eco-
nomics.
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committees.

To understand the mechanism underlying our result, consider first a sender

who observes a good or bad signal, and must decide which of two messages

to send to a receiver. The receiver observes the sender’s message, obtains

additional information about the realization of an event, and then decides

either yes or no. To make things simple, suppose that there is only one event

E in which the receiver might be influenced by the sender’s information. If it

is the case that the sender and receiver’s preferences are aligned in that event

then the standard result in the cheap-talk literature is that there exists an

informative equilibrium in which the receiver learns the sender’s information

prior to making her decision.

Let’s assume instead that, in the event E, the receiver prefers to choose yes

if the sender’s signal is good and no otherwise. However, the sender, knowing

that event E has occurred, prefers that the receiver choose yes regardless of

his signal. In this case the cheap-talk model predicts that the sender will

be unable to credibly reveal any persuasive information to the receiver. The

intuition is that if there were a message the sender could send that would

cause the receiver to believe he had observed the good signal (and, as a result,

persuade the receiver to choose yes) then the sender would send that message

even when he observes the bad signal.4

The central intuition underlying the results of the current paper can be

understood if we postulate a second event, E ′, in which the receiver might be

influenced by the sender’s information. Like event E, in event E ′ the receiver

would like to choose yes if and only if the sender’s signal is good. But unlike

event E, in event E ′ the sender would always like the receiver to choose no.

If, in addition, the sender’s signal is sufficiently correlated with the events

E and E ′, then the sender may prefer to truthfully report his signal. More

specifically, if observing the good signal causes the sender to believe event E is

4This intuition underlies the results of Wolinsky (2002), Battaglini (2017), and Gradwohl
and Feddersen (2018) on the impossibility of information transmission from a committee to
a receiver.
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more likely than event E ′, while observing the bad signal induces the opposite

inference, then truthful reporting may be incentive compatible.

In this paper we consider an environment in which there are multiple

senders with common values, each with a bit of information, and each sending

a cheap-talk message to a receiver. From the point of view of each sender, the

receiver observes not just that sender’s message, but also an event that con-

sists of the other senders’ messages. Hence, when the receiver’s preferences are

known and sufficiently different from the senders’, truthful revelation is not

incentive compatible: If each sender truthfully reports his information, the

event E in which his message matters is one in which he wants the receiver

to make the same decision, regardless of his signal. However, when there are

multiple receivers with preferences different both from the senders’ and from

each other, then truthful revelation may produce two different kinds of events:

ones in which the senders all want to lie in one direction (E), and ones in

which they want to lie in the other (E ′). We show that senders’ signals are

sufficiently correlated with the events, leading to the possibility of truthful

reporting in equilibrium.

We will compare a setting in which information is centralized, with a sin-

gle sender obtaining all information, to one in which it is decentralized, with

each of several senders obtaining some information. In terms of the applica-

tion to advisory committees, centralized information corresponds to an opaque

committee, whereas decentralized information corresponds to a transparent

committee.

Under centralization, standard cheap talk analysis concludes that, regard-

less of the number of receivers, one of the following occurs: either no persua-

sive information can be credibly transmitted, or there is partial but not full

information transmission.5 Which of the two possibilities is realized depends

on the quality of information, as characterized by the number and accuracy

of the sender’s signals. Under decentralization, however, the amount of in-

5See, e.g., the analyses in Battaglini (2017) and in Gradwohl and Feddersen (2018).
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1 receiver 2 receivers
centralized none none

decentralized none all

(a) Low-quality info

1 receiver 2 receivers
centralized some some

decentralized none all

(b) High-quality info

Figure 1: Amount of information communicated in equilibrium

formation transmitted depends on whether there is one receiver (and so one

pivotal event, E) or multiple receivers (and so multiple pivotal events, E and

E ′). As discussed above, in the former case no persuasive information can be

communicated in equilibrium, whereas in the latter case all information may

be communicated. This comparison is summarized in Figure 1, where the

contribution of the current paper consists of the second column of each table.

Our analysis can be applied to a variety of settings beyond that of multiple

receivers. For example, when there is one receiver who must decide on one

of two actions, there is one pivotal event. When she has more actions from

which to choose, or when the senders are uncertain about the receiver’s pair

of available actions, then there are multiple pivotal events. Similarly, if there

are multiple receivers, or when the senders are uncertain about the receiver’s

preferences, full-information transmission may be possible. We illustrate our

result in the following example, contrasting the impossibility of any informa-

tion transmission with the possibility of full-information transmission.

Example 1 There are two decision makers (DMs), each of whom must decide

whether or not to implement a particular gun-control policy in their respective

districts. The first DM only prefers the policy if she is sufficiently certain that

the policy will reduce crime (say, with probability above 75%). The second

DM prefers the policy even if she assigns somewhat low probability to its

effectiveness (as long as it is above, say, 25%). In addition, there are several

experts with information about the effectiveness of the policy. The experts

care about the actions of both receivers, and prefer that both implement the

policy whenever it is more likely to be effective than not.

Now, if the experts communicate with each DM separately, then for each
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such interaction there is one pivotal event E, and no credible communication

could take place in equilibrium. In contrast, if the experts communicate with

the DMs simultaneously, where all messages are seen by both DMs, then there

are two pivotal events: the event in which an expert’s message changes the

first DM’s decision, and the event in which it alters the second DM’s decision.

The insight of our paper implies that here, full-information transmission may

possible, leading to more-informed decisions about the poilcy.

In our formal analysis we provide conditions under which full-information

transmission is possible, and apply this result to argue for the benefit of man-

dating transparency in advisory committees. In particular, we show that if

the committee’s information is of low quality—there are few members or their

signals are not very accurate—then transparency leads to higher welfare for

both the committee and the DMs. In this case, there is no need to mandate

transparency, as the committee would voluntarily choose to act transparently.

In contrast, if the information is of high quality, then the committee prefers

opacity while the DMs prefer transparency. In this case, the DMs benefit from

mandating transparency.

Next, we analyze the robustness of such beneficial transparency, and of

fully-informative communication in general. We show that the result relies

critically on the lack of observability of communication between each sender

and the receivers. That is, if communication with the receivers is sequential

rather than simultaneous, informative communication is once more unattain-

able.

Finally, we consider two extensions to the model. First, we study more

general preferences, and examine the extent of fully-informative communica-

tion under a centralized sender. Second, we consider the possibility and extent

of partially-informative communication when senders value the actions of one

receiver significantly more than those of the other.

The rest of the paper proceeds as follows. Immediately following is a re-

view of the relevant literature. Section 2 describes our model of receivers, and
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Sections 3 and 4 contain our model of and main results on centralized and

decentralized senders, respectively. These are followed by Section 5 on advi-

sory committees. The extensions to the more general model and to partially-

informative communication are in Sections 6 and 7, followed by the conclusion

in Section 8. Most of the proofs are deferred to the Appendix.

Literature review This paper fits into the large literature on cheap talk

(see Farrell and Rabin, 1996; Sobel, 2013, for excellent surveys). It is most

closely related to a model of cheap talk in which there are multiple receivers,

introduced by Farrell and Gibbons (1989), in which fully-informative commu-

nication may be possible (see also Goltsman and Pavlov, 2011). The driving

force behind their possibility result, however, is distinct from that of our pa-

per. In Theorem 5 we apply the insight of Farrell and Gibbons (1989) to our

model, and show that it leads to full information transmission only in quite

limited circumstances.

Our paper is also related to the large literature on cheap talk with mul-

tiple senders. There are two strands of this literature, depending on whether

the senders have identical or different preferences. The first case has been

extensively studied in various contexts, including legislative politics (Gilligan

and Krehbiel, 1987; Austen-Smith, 1993; Li et al., 2001), polling (Morgan and

Stocken, 2008), public protests (Battaglini, 2017), expect advice and advisory

committees (Wolinsky, 2002; Gradwohl and Feddersen, 2018). The main con-

clusion from this literature is that preference differences between the senders

and the receiver lead to losses in the the informativeness of communication.

In Gradwohl and Feddersen (2018) (henceforth GF), for example, we show

that regardless of the structure of communication between the senders and re-

ceiver, no communication is possible in equilibrium.6 The current paper builds

on the model of GF, and shows that this conclusion is reversed when there are

multiple receivers.

6Similar results in different contexts appear also in Wolinsky (2002) and Battaglini
(2017).
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A second strand of the literature on multiple senders considers the case

in which senders have different preferences. Battaglini (2002) shows that full

information transmission is possible when the state space is multidimensional

and the senders each have perfect information. In subsequent work, Battaglini

(2004) studies imperfectly-informed senders and Ambrus and Takahashi (2008)

consider a restricted state space, and both show that the possibility of fully-

informative communication in this setting is limited.

Our paper is also related to work on information aggregation in committees,

(e.g. Austen-Smith and Banks, 1996; Gerardi et al., 2009; Plott and Llewellyn,

2015) and particularly to the paper of Austen-Smith and Feddersen (2006).

They show that when legislators deliberate prior to voting, preference uncer-

tainty increases their ability to reach informed decisions. Our paper expands

their insight to a general cheap talk environment.

Finally, the paper fits into the large literature on the costs and benefits of

transparency to decision making (e.g. Hansen et al., 2014; Fehrler and Hughes,

2018; Gradwohl and Feddersen, 2018; Paetzel et al., 2018; Shambaugh and

Shen, 2018, and many others).

2 Model

There are two possible, equally-likely states of the world, Θ = {G,B}, and one

or two decision makers (receivers), each of whom must decide between two pos-

sible outcomes, O = {y, n}. The presence of multiple receivers is amenable to

two additional interpretations: First, that there is one receiver but uncertainty

about her preferences, and second, that there is one receiver but uncertainty

about the actions available to her. We expand on these interpretations in Ap-

pendix A, but for the main body of the paper use the language of the initial,

multiple-receiver interpretation.

Let t ∈ {D,L,H} index the possible receivers: If there is one receiver index

her by D, and if there are two index them by L and H, as described below.
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Receiver t (Rt) taking action o ∈ O in state θ ∈ Θ derives utility ut(θ, o), where

ut(G, y) > ut(G, n) and ut(B, n) > ut(B, y). Given a belief β = P (θ = G)

about the probability that the state is G, Rt’s expected utility on choosing

outcome o is Ut(β, o)
def
= β · ut(G, o) + (1 − β) · ut(B, o). A rational receiver

will choose outcome y if and only if Ut(β, y) ≥ Ut(β, n).7 Since Ut(β, y) is

increasing in β and Ut(β, n) is decreasing in β, there exists a threshold βt such

that receiver t will choose y if and only if β ≥ βt.

Now, if there are two receivers, index them so that βL ≤ βH . For simplicity

and tractability we will assume throughout that βL = 1 − βH , but our main

results do not depend on this (see Appendix G).

Before making a decision, the receivers may obtain information from either

a centralized or decentralized source, which we describe in Sections 3 and 4,

respectively.

3 Centralized Information

Suppose first that decision-relevant information is centralized, held by a single

agent called the sender. To facilitate the comparison with the decentralized

setting, suppose the sender has access to an odd number N of conditionally-

independent, identically-distributed signals (s1, . . . , sN) of accuracy p ∈ (1/2, 1),

where each signal satisfies

P (si = g|θ = G) = P (si = b|θ = B) = p.

The sender’s utility u is additive in the actions of the receivers who are

present. Specifically, the sender obtains utility ut(θ, ot) from choice ot by

Rt in state θ. If there is only one receiver then the sender’s total utility is

u(θ, oD) = uD(θ, oD). If there are two receivers then u(θ, oL, oH) = uL(θ, oL) +

uH(θ, oH). As with the receivers, we suppose that ut(G, y) > ut(G, n) and

ut(B, n) > ut(B, y) for each t. The sender prefers outcome y from Rt whenever

7Assume she always chooses y if indifferent.
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his belief about the probability P (θ = G) about the state being G is above

some threshold γt. In most of this paper we will assume that, when there are

two receivers, γL = γH : that is, for any belief the sender may have about the

state, he prefers outcome y from one receiver if and only if he prefers it also

from the other receiver (but see Section 6 for a more general setting). For

simplicity we will also assume that ut(G, n) = ut(B, n) = 0 and ut(G, y) =

ct = −ut(B, y).8 Note that the sender’s utility from the receivers may be

different, since uH(G, y) need not equal uL(G, y), but that he prefers outcome

y from both receivers whenever his belief about the probability P (θ = G)

about the state being G is above the threshold γ = 1/2, and outcome n from

both otherwise. This means that the sender strictly prefers outcome y if the

number of good signals is above N/2, and otherwise strictly prefers outcome

n.

After observing the profile of signals, the sender sends a message m ∈ M
to the receivers, where M is some message space with |M | ≥ 2N . Denote by

σ : {g, b}N 7→ M a strategy of the sender. Upon observing a message, each

receiver then updates her prior over the state, and takes an action that depends

on whether the posterior surpasses her threshold βt or not. Formally, given a

strategy profile σ, denote the rational decision rule used by Rt on message m

as rt(σ,m), where for all m in the support of σ it holds that rt(σ,m) = y if

and only if P (θ = G | σ,m) ≥ βt, and rt(σ,m) = n otherwise.9 Denote by

r(σ) ≡ (rL(σ, ·), rH(σ, ·)).
Observe that without any information, RH will choose outcome n and RL

will choose outcome y. A profile σ is persuasive if there exists a message

m ∈ supp(σ) such that rL(σ,m) = n or rH(σ,m) = y. Additionally, since

we are interested in the possibility of information transmission in equilibrium,

denote a strategy profile σ as optimal if it is optimal for the sender given the

decision rules r(σ) of the receivers that it induces. Optimal profiles, together

8This symmetry assumption is made for tractability – the important feature is that the
sender’s threshold γ lie between those of the different receivers.

9Assume each receiver chooses y when indifferent. For messages m that are not in the
support of σ the choice of rt(σ,m) does not matter.
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with the corresponding r, form a Perfect Bayesian Equilibrium, the standard

notion of equilibrium in cheap talk games.10

Before stating our main result for centralized information we need one more

definition: Let βmaj be the posterior probability on (θ = G), given that at least

half of the signals are good. Formally,

βmaj(p,N)
def
= Pr

[
θ = G | #{i : si = g} ≥ N

2

]
.

The following theorem characterizes the kind of information transmission

possible in equilibrium. The result is straightforward and is similar to results

in Battaglini (2017) and Gradwohl and Feddersen (2018), but we find it useful

to restate and parametrize to allow for two receivers.

Theorem 1 For any N and p

• there exists an optimal persuasive strategy σ of the sender if and only if

βt ∈ [1− βmaj(p,N), βmaj(p,N)] for all participating receivers Rt;

• if σ is optimal and persuasive then the participating receivers choose

outcome y if and only if #{i : si = g} ≥ N
2

, and choose outcome n

otherwise.11

An immediate implication of the second bullet is that unless the receivers’

utilities are almost identical to the sender’s—namely, if they agree on the pre-

ferred outcome on every possible realized signal profile—there does not exist

an optimal σ in which the receivers learn the realization of all the signals

(see Claim 1 for a formal statement of this). That is, fully-informative com-

munication is not possible with a centralized sender. Furthermore, note that

Theorem 1 applies to both the case in which there is only one receiver and

10With appropriately defined off-equilibrium beliefs, for example that on m 6∈ supp(σ)
the posterior is equal to the prior.

11Except for the degenerate case in which βH = βmaj and βL = 1 − βmaj, in which case
only RH chooses these outcomes, whereas RL always chooses y.
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the case in which there are two, and so the amount of information transmis-

sion, and particularly whether there is any, does not depend on the number of

receivers.

Finally, when βH > βmaj(p,N) there is no optimal and persuasive strategy—

any optimal strategy cannot be persuasive. For fixed βH and p, then, there is

a minimum number of signals for which communication is persuasive. Denote

this minimum by NC(βH , p)
def
= min{N ∈ Z+ : βmaj(p,N) ≥ βH}. We will

show that under decentralized information fewer signals are necessary.

4 Decentralized Information

Instead of one sender with N signals, suppose now that there are N decentral-

ized senders, numbered {1, . . . , N}, each with his own signal. Furthermore,

the decentralized senders have a common utility function u that is identical to

that of the centralized sender of Section 3.

A strategy σi of sender i is a function from his signal to a distribution

over {y, n}. Denote by σ = (σ1, . . . , σN) a profile of strategies, and by σ(s)

the profile of strategies given signal profile s = (s1, . . . , sN). We will restrict

ourselves to symmetric strategy profiles, ones in which σi ≡ σj for all senders

i and j. The only relevant aspect of realized profiles is thus the realized

number of y votes, which we call the vote profile v. Also, denote by σ(θ) the

distribution over vote profiles under σ is state θ.

After the senders vote, the receivers observe the realized vote profile v. As

in the case of a centralized sender, the receivers update their beliefs about the

state and take actions that depend on whether the posterior surpasses βt or

not. Formally, given a strategy profile σ, denote the rational decision rule used

by Rt on realized voting profile v as rt(σ, v).

A strategy profile σ of the senders is informative if it conveys some infor-

mation: if there is some vote profile v that occurs with positive probability

under σ, and such that Pr[θ = G|σ, v] 6= 1/2. A strategy profile σ is persuasive
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if it sometimes leads some receiver to choose differently: There is some vote

profile v that occurs with positive probability under σ, and for which either

Pr [θ = G | σ, v] < βL or Pr [θ = G | σ, v] ≥ βH . Note that, as with a central-

ized sender, if σ is not persuasive then the receivers base their choices only on

the prior distribution over states.

When the receivers update their priors they condition on both the vote

profile v and on the strategy profile σ. But what prevents a sender from

deviating from σ, unbeknownst to the receivers? In the case of the centralized

sender, we required his strategy to be optimal given the receivers’ decision

rules. For decentralized senders we will require each σi to be optimal for sender

i conditional on the receivers acting rationally and given the strategies of the

other senders. That is, the profile σ must constitute a Nash equilibrium given

the receivers’ rational decision rule that it induces. In a standard voting game,

where senders vote and there is a fixed decision rule mapping vote profiles to

outcomes, one may require that the voting strategy be in equilibrium. The

difference here is that there is no fixed decision rule: instead, the decision rule

is chosen endogenously by the receivers, given σ, t, and v. A profile σ is then

an equilibrium if it is in equilibrium given the decision rules that it induces.

Formally,

Definition 1 (equilibrium) A strategy profile σ is an equilibrium if for each

sender i, signal si, and strategy σ′i,

E [u(θ, r(σ(s))) | si] ≥ E [u(θ, r(σ′i, σ−i(s))) | si] ,

where r(·) ≡ rD(σ, ·) when there is one receiver and r(·) ≡ (rL(σ, ·), rH(σ, ·))
when there are two receivers, and the expectation is over θ, s−i, and σ.

Example 2 below illustrates the idea.
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4.1 One receiver

Is decentralization better than centralization? The case of one receiver was

studied by GF, and the following example illustrates the main (negative) result.

Example 2 Let N be odd, and consider the strategy of fully-informative vot-

ing, in which each sender i votes vi = y if and only if si = g. Such voting is

not an equilibrium when there is only one receiver with βD > p: To see this,

suppose each sender votes according to his signal, and note that on profiles

in which only a bare majority voted y (specifically, if exactly dN/2e voted y)

the posterior of the receiver will be p. She will thus choose outcome n on

these profiles, and so the induced decision rule is a supermajority rule. But in

this case it is well-known that fully-informative voting is not an equilibrium

(Austen-Smith and Banks, 1996; Feddersen and Pesendorfer, 1998).

GF prove a general theorem about the impossibility of any communication

between decentralized senders and one receiver. For the theorem, define the

threshold β(p)
def
= p2/(p2 + (1− p)2).12

Theorem 2 (GF) Fix N and p > 1/2. If βD 6∈ [1 − β(p), β(p)] then there

does not exist any persuasive equilibrium strategy profile.13

Thus, if there is only a single receiver and preferences are not sufficiently

close, centralized information is better than decentralized information.

4.2 Two receivers

We next consider decentralized information when there are two receivers. This

setting is the main contribution of our paper.

12The interpretation is the following: Starting with a prior P (θ = G) = 1/2, if the receiver
observes that sender i has a good signal, then she updates to P (θ = G | si = g) = p. If she
then also observes that sender j 6= i has a good signal, she updates to P (θ = G | si = sj =
g) = p2/(p2 + (1− p)2), which is precisely β(p).

13In fact, GF show that this impossibility extends beyond voting.
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We begin with some definitions. For a given strategy profile σ, let kL(σ) be

the number such that, if kL(σ) senders vote y then RL prefers outcome o = n,

but if kL(σ) + 1 senders vote y then she prefers outcome o = y. Similarly, Let

kH(σ) be the same but for RH . We will omit the dependence on σ when clear

from context. Formally, under strategy profile σ, for t ∈ T ,

P (θ = G|v = kt) < βt ≤ P (θ = G|v = kt + 1).

With some abuse of notation, we will also denote by kt the event that (v−i =

kt).

Let pivi(σ) be the event that sender i is pivotal, namely that his vote will

change the chosen outcome of some receiver, when senders play strategy profile

σ. Formally, pivi(σ)
def
= (v−i = kL(σ)) ∪ (v−i = kH(σ)). Again, we will omit

the dependence on σ when clear from context.

Finally, recall that the senders’ utility is such that ut(G, y) = ct, u
t(B, y) =

−ct, and ut(θ, n) = 0. In what follows it will be useful to denote by h
def
=

cH/(cH + cL) the weight the senders put on the decision of RH relative to that

of RL. We will also refer to ` = 1− h.

Fully-informative equilibrium Let τ be the fully-informative strategy

profile. We are interested in the question of when τ is an equilibrium—that is,

when does a fully-informative equilibrium (FIE) exist. In order for τ to be an

equilibrium it must be the case that each sender prefers to vote informatively.

Since senders only affect the outcome when they are pivotal, this is equivalent

to each sender preferring to vote informatively, conditional on being pivotal.

Let r be the decision rules of the receivers, with thresholds kL and kH , under

τ . On signal si = g, then, sender i should prefer to vote y, which requires

E[u(θ, r(τ(s)))|si = g, pivi] ≥ E[u(θ, r(σi, τ−i(s)))|si = g, pivi],
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where σi is the deviation of sender i to voting n on signal g. This is equivalent

to

P (θ = G ∩ kL|si = g)cL + P (θ = G ∩ kH |si = g)cH

≥ P (θ = B ∩ kL|si = g)cL + P (θ = B ∩ kH |si = g)cH ,

which is equivalent to

`P (θ = G ∩ kL|si = g) + hP (θ = G ∩ kH |si = g)

`P (kL|si = g) + hP (kH |si = g)
≥ 1

2
.

An analogous inequality must hold for si = b, and it is straightforward to see

that both hold if and only if

`P (θ = G ∩ kL) + hP (θ = G ∩ kH)

`P (kL) + hP (kH)
∈ [1− p, p]. (1)

The LHS of (1) can intuitively be understood as P (θ = G|pivi), except

that the elements referring to kL and kH are weighted by h and `, respectively.

Equation (1) can be further simplified under our assumption that βL =

1 − βH , as in this case kL = N − 1 − kH , which implies that P (v−i = kL) =

P (v−i = kH). Thus, in this case there exists a FIE if and only if `P (θ =

G|kL) + hP (θ = G|kH) ∈ [1 − p, p], where P (θ = G|kL) is close to βL and

P (θ = G|kH) is close to βH . Thus, there is a FIE if and only if the weighted

average of the posteriors on (θ = G) at the pivotal events, weighted according

to h and 1− h, is close to the senders’ threshold.

The intuition for the possibility of fully-informative equilibria builds on

the impossibility of such equilibria when there is only one receiver. Consider

first this latter case, in which only RD is present, as in Example 2. Suppose

all decentralized senders play the fully-informative strategy, and consider one

sender’s reasoning. On either signal, he conditions on being pivotal, as this

is the only case in which his vote matters. If he is pivotal, this means that

the posterior on (θ = G) must be close to βD. On a good signal his posterior
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is even higher, and so he certainly wishes to vote y, and on a bad signal the

posterior is a bit below βD. But if βD is sufficiently higher than 1/2 then his

posterior on a bad signal is still above 1/2, and so he wishes to vote y here as

well. Thus, fully-informative voting is not an equilibrium.

Now consider the case in which there are two receivers. When a given

sender is pivotal for RH , his posterior is close to βH , whereas if he is pivotal

for RL his posterior is close to βL. The sender must then weigh the relative

weights of being pivotal for each of the two receivers, namely the probability

(v−i = kH) weighted by h versus the probability (v−i = kL) weighted by `.

When βH = 1 − βL the probabilities of (v−i = kH) and (v−i = kL) are the

same, and so only h is relevant. When h is not too far from ` the two pivotal

events are roughly equally-weighted, and so the sender places roughly equal

weight on the posterior close to βL and the posterior close to βH . The average

is close to 1/2, and so the sender’s own signal is the determining factor in

assessing which state is more likely. Thus, he votes informatively.

The following example formalizes this logic:

Example 3 Suppose N = 3, βH < p3/(p3 + (1− p)3), and h = ` = 1/2. The

bound on βH implies that if all senders have the good signal (respectively, the

bad signal), then RH (respectively, RL) would choose outcome y (respectively,

n). Then under fully-informative voting

`P (θ = G ∩ kL) + hP (θ = G ∩ kH)

`P (kL) + hP (kH)

=
` · P (kL|G) + h · P (kH |G)

` · P (kL|G) + h · P (kH |G) + ` · P (kL|B) + h · P (kH |B)

=
P (kL|G) + P (kH |G)

(P (kL|G) + P (kH |B)) + (P (kH |G) + P (kL|B))
=

1

2
,

since βH = 1 − βL implies that kH = 2 − kL, and so under fully-informative

voting we have that P (kL|G) = P (kH |B) and P (kL|B) = P (kH |G). Thus,

there is a FIE. Furthermore, by the assumption on βH , this FIE is persuasive.

Now suppose everything is as in Example 3, except that βH = p4/(p4 +
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(1 − p)4). That is, RH requires at least 4 good signals in order to choose y,

and RL requires at least 4 bad signals in order to choose n. If there are only

3 senders, however, there is never enough information for either receiver, and

so no equilibrium will be persuasive.

Increasing the number of senders will help: If N = 5, for example, then

an analysis similar to that of Example 3 will imply that there is a FIE. This

FIE is persuasive, since RH will choose y if all 5 voters vote y (and will choose

n otherwise), and RL will choose n if all 5 voters vote n (and will choose y

otherwise). In fact, at least 5 senders are required to persuade both receivers

in this example. To generalize, denote by N(βH , p) the size of the smallest

number of senders that are able to persuade both receivers with thresholds

βH and βL = 1 − βH , namely N(βH , p)
def
= min{N ∈ Z+ : βH ≤ pN/(pN +

(1 − p)N) and βL > (1 − p)N/(pN + (1 − p)N)}. Observe that, in general,

N(βH , p) < NC(βH , p), and so fewer signals are necessary for a persuasive FIE

under decentralization than any persuasive profile under centralization.

Note that h = ` is not necessary for the existence of a FIE, and instead

there is an interval of h’s for which they exist. Furthermore, as the following

theorem states, this interval is independent of N :

Theorem 3 For any βH and p there exists an interval HFIE = [h1, h2] with

h1 < h2 such that there is a persuasive FIE for every odd N ≥ N(βH , p) if and

only if h ∈ HFIE.14

5 Advisory Committees

In this section we view the decentralized senders as forming an advisory com-

mittee, and examine the potential benefit of transparency from the point of

view of the receivers, in light of Theorem 3. We then analyze the robustness

of this benefit, as well as the existence of a FIE, to variations in the structure

of the committee’s communication.

14An identical theorem holds for even N , but the interval HFIE will be slightly different.
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5.1 Transparency vs. Opacity

Suppose that the senders, who now comprise a committee, observe their re-

spective signals and vote. The information observed by the receivers before

choosing y or n is then one of the following:

• Under transparency, the receivers observe the entire profile of votes.

• Under opacity, only the committee observes the profile of votes, whereas

the receivers observe a message m ∈ M subsequently sent by a specific

member of the committee called the committee chair.

Observe that transparency is analogous to the decentralized setting of Sec-

tion 4, whereas opacity is analogous to the centralized setting of Section 3.

A first question is, when senders’ strategies are an equilibrium, do the re-

ceivers prefer transparency or opacity? A second question is, when is there

a benefit to mandating transparency? Note that if all parties prefer trans-

parency, then there is no reason to require it – the committee will conduct

itself transparently by choice. Mandated transparency will be beneficial if the

receivers prefer transparency whereas the senders prefer opacity.

The senders’ and receivers’ preferences partly depend on the strategy pro-

file played by the committee. For example, an uninformative (babbling) profile

always exists under both transparency and opacity, rendering all parties indif-

ferent. In the following, then, we suppose that the committee plays a profile

that is Pareto optimal for the receivers, out of all equilibrium profiles. We note

that under both opacity and transparency, whenever there exists a persuasive

equilibrium profile that is Pareto optimal, it is unique.

In their study of transparency, GF use Theorem 2 to show that mandating

transparency is harmful.

Proposition 1 If there is one receiver with βD > β(p) then the committee

and the receiver prefer opacity.
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The intuition is straightforward: under transparency, Theorem 2 shows

that there is no persuasive communication. Under opacity, however, persuasive

communication is possible when βD ≤ βmaj (by Theorem 1), in which case

committee members and receiver are strictly better off.

When there are multiple receivers, however, transparency can be beneficial:

Proposition 2 If there are two receivers and h ∈ HFIE then

• both receivers prefer transparency;

• the committee prefers transparency if βH > βmaj, and opacity otherwise.

When βH > βmaj all parties prefer transparency. When βH ≤ βmaj, how-

ever, there is a benefit to mandating transparency: the receivers prefer it, but

the committee would not voluntarily choose it, as they prefer opacity.

The intuition for Proposition 2 is also straightforward. By Theorem 3,

if h ∈ HFIE then under transparency there is a persuasive FIE. This is best-

possible for the receivers, and so they always prefer it. For opacity, in contrast,

Theorem 1 states that there is either no persuasive equilibrium (when βH >

βmaj) or a partially-informative persuasive equilibrium in which the senders

obtain their optimal outcomes (when βH ≤ βmaj). The senders prefer the

latter most and the former least, with the FIE in the middle.

5.2 Sequential Voting

We now argue that the existence of a FIE, and hence also the benefit of

transparency, relies crucially on the structure of communication between the

senders and the receivers. Theorem 3 shows that fully-informative voting

is an equilibrium when senders vote simultaneously. But when senders vote

sequentially, no information transmission is possible in equilibrium:

Theorem 4 Suppose senders vote sequentially. Then there is no persuasive

equilibrium profile for any h, p, N , and βH > β = p2/(p2 + (1− p)2).
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The intuition is that when senders vote sequentially, senders near the end

of the sequence already know which receiver they have a chance of persuading.

For example, a sender who observes more y votes than n votes knows he will

not be able to persuade RL, but may be able to persuade RH . Thus, from

the point of view of this sender he is only facing one receiver, in which case

he will not vote informatively (by Theorem 2). In this manner, information

transmission completely unwinds.

6 Centralized Information in a General Model

In this section we consider a more general setting than the rest of the paper,

and examine the possibility of fully-informative communication with a cen-

tralized sender. Theorem 5 below will point to the limited applicability of

the Farrell and Gibbons (1989) insight to full-information transmission in our

model.

Specifically, we drop the assumptions that βL = 1− βH and that γL = γH .

Recall that the centralized sender’s utility from action o ∈ {y, n} of Rt is

ut(θ, o), and where the total utility of the sender is u(θ, oL, oH) = uL(θ, oL) +

uH(θ, oH). As above, for each t there is a threshold γt such that the sender

prefers action y by Rt if and only if his posterior on (θ = G) is at least γt.

However, we now allow γL to be distinct from γH , and both to be distinct from

βL and βH . For example, the sender may prefer outcome y from RL whenever

the posterior is above 0.25, and from RH whenever it is above 0.4. Also, denote

by γ the threshold of the sender relative to the aggregate receiver: Namely, it

is the threshold such that the sender prefers both receivers to choose y over

both receivers to choose n if and only if the posterior is at least γ.

For any N and p, two thresholds β, β′ ∈ [0, 1] are (N, p)-equivalent, denoted

by β ≈ β′ when N and p are clear from context, if for every profile s ∈ {g, b}N

of signals with accuracy p it holds that P (θ = G|s) < β ⇔ P (θ = G|s) < β′.

This means that although the thresholds β and β′ may be not be exactly equal,
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every realized signal profile lies on the same side of both.

In this section, assume (without loss of generality) that when there is a

centralized sender the message space is equal to the set of possible signal

realizations, M = {g, b}N . We begin with a claim. Suppose there is only one

receiver, with preferences captured by the threshold βD. Furthermore, let the

sender’s preferences over the receiver’s actions be captured by the threshold

γD. Then:

Claim 1 When N ≥ N0 (βD, p) the sender has an optimal, fully-informative

strategy if and only if βD ≈ γD.

This is an implication of Theorem 1. Of course, even if βD 6≈ γD, there

may be some informative communication between the sender and receiver in

equilibrium. The point here, however, is that not all information is disclosed.

Next, suppose there are two receivers with βL ≤ βH and arbitrary γL

and γH . Then there may be an optimal, fully-informative strategy under

centralized information, but only in two cases:

Theorem 5 When N ≥ N0(max{βH , 1 − βL}, p) the sender has an optimal,

fully-informative strategy if and only if at least one of the following holds:

• γL ≈ βL and γH ≈ βH ;

• βL ≈ βH ≈ γ.

In the first case, the addition of a second receiver does not facilitate fully-

informative communication, as such communication would be possible with

only one receiver as well, by Claim 1. The second case is essentially the insight

of Farrell and Gibbons (1989) applied to our setting. That is, fully-informative

communication is possible by the mechanism described by Farrell and Gibbons

(1989) only in the restricted case in which βL ≈ βH ≈ γ. When neither case of

Theorem 5 is satisfied then there is no fully-informative communication under

centralized information. In particular, the main setting studied in most of this
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paper, with βL = 1−βH and γL = γH = 1/2 is such a case whenever βH 6≈ 1/2,

and so here decentralization can be strictly beneficial to the receivers.

A natural question is whether or not decentralization can be harmful—that

is, are there situations in which there is fully-informative communication under

centralization but not under decentralization? The following claim answers

negatively:

Claim 2 Fix a centralized sender with N signals of accuracy p as well as one

or two receivers, and suppose that the sender has an optimal, fully-informative

strategy. Then under decentralization there is a FIE.

7 Partially-Informative Equilibria

Under decentralization, when h is too large to admit a FIE, there may still

be a partially-informative equilibrium (PIE), in which senders play a mixed

strategy. Such an equilibrium is more informative than any equilibrium under

centralized information if βH 6∈ [1− βmaj(p,N), βmaj(p,N)], as in that case

there is no information transmission in any equilibrium. Does there always

exist a PIE? The immediate answer is no: if h = 0 or h = 1 then there is

effectively only one receiver, and so we know from Theorem 2 that there is

no persuasive equilibrium. But what if h ∈ (0, 1)? We will argue that if h is

sufficiently large (or small), then there is no PIE, regardless of the number of

senders.

Observe first that every symmetric PIE σ must have one-sided mixing :

senders mix either on si = g or on si = b, but never on both. Notice also that

each strategy profile σ implies unique pivotal thresholds kH(σ) and kL(σ).

An equilibrium with mixing on signal si = w is then a profile σ such that

P (θ = G|pivi(σ), si = w) = 1/2. If mixing on si = g then this is equivalent to

P (θ = G|pivi(σ)) = 1 − p, and if mixing on si = b then this is equivalent to

P (θ = G|pivi(σ)) = p.
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Suppose senders mix on signal si = b, so that they vote y on with proba-

bility σi(b) > 0 when si = b. Then for each k ∈ {1, . . . , N}, the posterior on

(θ = G) given exactly k votes for y decreases as σi(b) increases. This is because

the more senders mix on a bad signal, the less informative a y vote becomes.

Thus, as σi(b) increases, kH(σ) and kL(σ) also increase. Similarly, if senders

mix on signal si = g, then as σi(g) increases, kH(σ) and kL(σ) decrease.

Is there always a PIE? Suppose h 6∈ HFIE, and consider a pair of thresholds

mH ,mL ∈ {0, . . . , N − 1} with mH > mL. For each such pair, it is possible

that there is a profile σ with one-sided mixing such that mH = kH(σ) and

mL = kL(σ). However, for each such pair mH and mL there is a maximum

amount of mixing in equilibrium, subject to these being the thresholds—if

senders were to mix more, then the posteriors on the thresholds would be too

high or too low, and the thresholds would change. Now, given mH and mL, as

well as this maximal amount of mixing, it holds that if h is too large then there

is no equilibrium with these thresholds. This follows from the observation that

increasing h increases the posterior on (θ = G) conditional on sender i being

pivotal, at some point surpassing p. Thus, for any pair of thresholds there is

a maximal h for which the thresholds potentially correspond to a PIE. For a

fixed number of players, if h surpasses the maximum of all these (over all pairs

of thresholds), there will be no PIE.

However, if the number of players increases, then so does the set of possible

maximal h’s. One might then conjecture that for every h ∈ (0, 1) there is a

PIE if there are sufficiently many players. Theorem 6, however, disproves this

conjecture.

Theorem 6 For every p and βH > p2/(p2 + (1− p)2) there exists a nonempty

set HNP = [0, h1)∪ (h2, 1] for which the following holds: if h ∈ HNP then there

is no persuasive PIE for any N .

In words, if h is too high or too low then increasing the number of voters

will not help. To see the intuition, observe that although changing the level

of mixing may alter the pivotal thresholds kL(σ) and kH(σ), the posterior
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on (θ = G) at each such threshold stays roughly the same: around βL at

kL(σ) and around βH at kH(σ). The main effect of mixing is to thus vary the

probabilities of the pivotal events kL and kH . The main idea of the proof is to

show that for any level of mixing the ratio of these latter probabilities cannot

be either too large or too small, and in particular that it is bounded above

and below independently of the number of senders.

8 Conclusion

In this paper, we developed a model of cheap talk communication with multiple

senders and multiple receivers, and showed that fully-informative communica-

tion may be possible. The possibility applies beyond this specific setting, to

ones in which there is one receiver with multiple options, and to the presence

of uncertainty about the preferences or available options of the receiver. Draw-

ing an analogy between decentralized senders and a transparent committee,

our analysis also provides a rationale for mandating transparency in advisory

committees.

There are several interesting questions left open by this paper. Two main

questions are to characterize the information structures under which fully-

informative communication is possible, and under which the decentralized set-

ting dominates the centralized setting.

Another interesting direction is to consider a different model of preferences

for the senders in which their utilities depend not on the chosen outcome and

the realized state, but rather on their individual recommendation and the

state, similarly to the career concerns literature. In subsequent and ongoing

work, we show that many of the insights of this paper persist under such

preferences.
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Appendix

A Alternative Interpretations

We now discuss two analogous interpretations of multiple receivers. The first

is that instead of two receivers there is just one receiver, but with uncertainty

about her bias: Namely, she can be one of two types, high or low, where the

high type is realized with probability h and the low type with probability `.

The utilities of the high and low type of receiver are equal to the utilities of

RH and RL, respectively. Furthermore, the common utility function of the

senders is u : Θ × O 7→ R, where u(G, n) = u(B, n) = 0, u(G, y) = 1, and

u(B, y) = −1, regardless of the realized receiver choosing the outcome. This

model with bias uncertainty is analogous to the multiple receivers model.

Claim 3 The two-receivers model is identical to the bias uncertainty model

with h = cH/(cH + cL), modulo innocuous scaling of the senders’ utilities.

The proof is at the end of this section.

The second alternative interpretation, easily seen to be analogous to the

first, is that instead of uncertainty about the type of receiver, there is only one

receiver but exogenous uncertainty about the options available to her: with

probability h she must choose between outcomes yH and nH , and with proba-

bility ` she must choose between outcomes yL and nL. The senders’ preferences

are as above, with u(G, n) = u(B, n) = 0, u(G, y) = 1, and u(B, y) = −1, and

where y ∈ {yL, yH} and n ∈ {nL, nH}. The receiver’s preferences for yL and

nL (respectively, yH and nH) are like those of RL (respectively, RH) for y and

n.

Proof of Claim 3: Denote the actions of RH and RL by oH and oL. The

utility of the senders is u(θ, oH , oL) = uH(θ, oH) + uL(θ, oL), where ut(θ, ot) is

the senders’ utility from the action ot of Rt. Finally, recall that for each t it

holds that ut(θ, y) = ct if θ = G, ut(θ, y) = −ct if θ = B, and ut(θ, n) = 0.

26



Fix a strategy profile σ for the senders, and let rH and rL be the corre-

sponding decision rules of the receivers. In the two-receiver model, for each

θ ∈ Θ it holds that

E[u(σ, rH(σ, σ(θ)), rL(σ, σ(θ)))] = E[uH(θ, rH(σ, σ(θ))] + E[uL(θ, rL(σ, σ(θ))]

= cH · E[u(θ, rH(σ, σ(θ))] + cL · E[u(θ, rL(σ, σ(θ))]

= (cH + cL)

(
cH

cH + cL
· E[u(θ, rH(σ, σ(θ))] +

cL
cH + cL

· E[u(θ, rL(σ, σ(θ))]

)
= (cH + cL)E[u(σ, rt(σ, σ(θ)))],

where the expectation is over θ, σ, and t, where the type t = H with probability

cH/(cH +cL) and t = L otherwise. Thus, for every strategy profile the senders’

utility is identical in the two-receiver model and in the bias uncertainty model

(except that the latter is scaled by cH + cL). This implies that the incentive

compatibility constraints are identical, as are thus the equilibria and utility

comparisons.

B Proof of Theorem 1

Proof of Theorem 1: Suppose h > 0, and so there are either two receivers,

or if h = 1 then just the high receiver (a symmetric proof holds if h = 0).

Consider first the case in which βH > βmaj(p,N) (a symmetric case holds

for βH < 1−βmaj in the case of one receiver). Suppose towards a contradiction

that there is some optimal persuasive σ. Without loss of generality, suppose

RH is persuaded. Let rt be the corresponding decision rule of RH , where rt :

M 7→ {y, n}. If rH is such that RH always chooses y when #{i : si = g} ≥ N
2

,

then P (θ = G|rt = y) ≤ βmaj. But since βH > βmaj(p,N) this cannot be an

optimal decision rule for RH , a contradiction. Suppose then that the outcome

is not always y when #{i : si = g} ≥ N
2

. Persuasiveness implies that there is

some message my ∈M such that rH(my) = y. Thus, a profitable deviation for

the sender is to send message m whenever #{i : si = g} ≥ N
2

, contradicting
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optimality.

Next, consider the case in which βH < βmaj(p,N) (and βH > 1 − βmaj in

the case of one receiver). One optimal persuasive strategy sends a message my

whenever #{i : si = g} ≥ N
2

, leading to outcome y for both receivers, and a

message mn otherwise, leading to outcome n for both receivers. Suppose that

there is some other optimal persuasive strategy σ in which the receivers do

not choose y if and only if #{i : si = g} ≥ N
2

.

We first claim that since σ is persuasive, both receivers must be persuaded.

Suppose not, and only one is persuaded, say RH . This means that there is

some message my such that both receivers choose outcome y on message my.

Optimality implies that RH chooses y if and only if #{i : si = g} ≥ N
2

(otherwise the sender will have a profitable deviation). But this implies that

the posterior on (θ = G|rH = n) = 1− βmaj, as a majority of the signals must

have been bad. This further implies that there is some message sent by the

sender, say mn, such that (θ = G|mn) ≤ 1 − βmaj. This message persuades

RL, as claimed.

Thus, persuasiveness implies that there are two messages my and mn such

that both receivers choose y on message my and n on message mn. Now,

suppose that under σ there is some signal profile with fewer than N/2 good

realizations, on which one of the receivers chooses y with positive probability.

Then the sender has a profitable deviation from σ – namely, to send mn on this

signal profile. Similarly, if there is a signal profile with more than N/2 good

realizations on which one of the receivers chooses n with positive probability,

a profitable deviation of the sender would be to send my on this signal profile.

Either case contradicts feasibility. This contradiction implies that if σ is a

persuasive equilibrium then the receivers choose outcome y if and only if #{i :

si = g} ≥ N
2

.

28



C Proof of Theorem 3

Proof of Theorem 3: For this proof, let us assume an alternative inter-

pretation of the proof, in which there is one receiver with threshold βH with

probability h and with threshold βL with probability ` = 1− h, and in which

the senders’ utilities are u (see Section A). For simplicity, denote by h (respec-

tively, `) also the event that the realized type of receiver is high (respectively,

low).

When is sincere voting an equilibrium? It must be the case that, condi-

tional on being pivotal, each voter weakly prefers to vote sincerely for both

possible signals. Formally, it must be the case that P (θ = G|pivi) ∈ [1− p, p].
For ease of notation, denote the number of senders by N + 1. For a fixed

sender i, the pivotalness probability is calculated with respect to the remain-

ing N senders. Now,

P (θ = G|pivi) =
P (G ∩ pivi)

P (pivi)

=
P (G ∩ kL ∩ `) + P (G ∩ kH ∩ h)

P (kL ∩ `) + P (kH ∩ h)

=
` ·
(
N
kL

)
pkL(1− p)N−kL + h ·

(
N
kH

)
pkH (1− p)N−kH

Z
,

where

Z = ` ·
(
N

kL

)
pkL(1− p)N−kL + h ·

(
N

kH

)
pkH (1− p)N−kH

+ ` ·
(
N

kL

)
(1− p)kLpN−kL + h ·

(
N

kH

)
(1− p)kHpN−kH

and where kL and kH are the pivotal events given the low and high types of

receiver, respectively, when the senders play the fully-informative profile.

The assumption that the receiver is symmetric, namely that βH = 1− βL,
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implies that kH = N − kL, and so we get that

P (θ = G|pivi)

=
` · pkL(1− p)N−kL + h · pkH (1− p)N−kH

` · pkL(1− p)N−kL + h · pkH (1− p)N−kH + ` · (1− p)kLpN−kL + h · (1− p)kHpN−kH

=
` · pkL(1− p)N−kL + h · pkH (1− p)N−kH

` · pkL(1− p)N−kL + h · pkH (1− p)N−kH + ` · (1− p)N−kHpkH + h · (1− p)N−kLpkL

=
` · pkL(1− p)N−kL + h · pkH (1− p)N−kH

(`+ h) · pkL(1− p)N−kL + (`+ h) · pkH (1− p)N−kH

=
` · pkL(1− p)N−kL + h · pN−kL(1− p)kL

(`+ h) · pkL(1− p)N−kL + (`+ h) · pN−kL(1− p)kL

=

(
pkL(1− p)kL

) (
` · (1− p)N−2kL + h · pN−2kL

)
(pkL(1− p)kL) · ((1− p)N−2kL + pN−2kL)

=
` · (1− p)N−2kL + h · pN−2kL

(1− p)N−2kL + pN−2kL
.

Observing that N − 2kL = N − kL − (N − kH) = kH − kL yields

P (θ = G|pivi) =
` · (1− p)kH−kL + h · pkH−kL

(1− p)kH−kL + pkH−kL
.

Finally, since kH − kL depends only on βH and βL, and is independent of

N (but note that it depends on the parity of N), it holds that whether or not

P (θ = G|pivi) ∈ [1 − p, p] depends only on h, βH , and βL, and not on N . In

particular, it holds whenever

h ∈
[

(1− p) · pkH−kL − p · (1− p)kH−kL
pkH−kL − (1− p)kH−kL

,
pkH−kL+1 − (1− p)kH−kL+1

pkH−kL − (1− p)kH−kL

]
.

D Proof of Theorem 4

Proof of Theorem 4: Consider a strategy profile σ of the senders, where

each sender’s strategy now depends on both his signal and the realized votes
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of senders who precede him in the sequence. Suppose towards a contradiction

that σ is a persuasive equilibrium.

Let us view the sequence of voting as a tree, where in each level of the tree

a different sender votes. Consider the last level of the tree, after which the

receiver makes a decision. If for every sender at this last level, the actions of

both types of receiver are unchanged by this sender’s vote, then we can delete

the last level and consider the tree with one fewer level. So suppose that some

sender’s vote on the last level is pivotal for some receiver, and denote the

sender by i and the sequence of votes leading up to this sender’s pivotal vote

as w.

Now, if sender i is pivotal for the high-type receiver, then P (θ = G|w ∩
mi = y) ≥ βH and P (θ = G|w ∩ mi = n) < βH . Similarly, if sender i

is pivotal for the low-type receiver, then P (θ = G|w ∩ mi = y) ≥ βL and

P (θ = G|w ∩mi = n) < βL. Because βH > p2/(p2 + (1− p)2, sender i can be

pivotal for at most one type of receiver. Without loss of generality, suppose

he is pivotal for the high type. But then P (θ = G|w ∩mi = y) ≥ βH implies

that P (θ = G|w) > p. Thus, even if sender i gets the low signal he will vote

y. This implies that for σ to be an equilibirium, sender i always votes y on

history w. Thus, we can delete sender i’s action at history w from the tree.

Since we can repeat the argument above for any pivotal sender at the last

level, feasibility implies that we can remove the entire last level of the tree.

Iterating this argument leads to an empty tree, and so feasibility implies that

σ is not informative and so also not persuasive, a contradiction.

E Proofs from Section 6

Proof of Claim 1: It is clear that there is a persuasive FIE when βD ≈ γD.

Suppose then that βD 6≈ γD, and without loss suppose γD < βD. Then there

is a signal profile s for which the sender prefers outcome y while the receiver

prefers outcome n. Thus, there cannot be a FIE: on realization s, the sender
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strictly benefits from deviating and reporting the profile s′ = (b . . . b), where

rD(s′) = n.

Proof of Theorem 5: It is clear that under the first bullet there is a

persuasive FIE. Now suppose βL ≈ βH ≈ γ, and that the sender plays the

fully-informative strategy. Since βL ≈ βH both receivers always choose the

same action. Any deviation by the sender will thus either leave the outcomes

unchanged, or will lead outcomes (n, n) to (y, y) or (y, y) to (n, n). However,

since γ ≈ βH none of these deviations will be strictly beneficial to the sender.

Thus, there is a FIE.

For the “only if” direction, suppose that neither of the bullets in the theo-

rem hold, and that the sender plays the fully-informative strategy. If βL ≈ βH

then γ 6≈ βH . Thus, there is some signal profile s such that the receivers prefer

outcomes (y, y) whereas the sender prefers outcome (n, n), or vice versa. A

profitable deviation for the sender is thus to send message s′ = (b . . . b) on

realization s (or s′ = (g . . . g) in the vice versa case), leading to outcome (n, n)

(or (y, y) in the vice versa case). Thus, there is no FIE.

If βL 6≈ βH then there is some profile s such that given this realization,

RL prefers outcome y whereas RH prefers outcome n. Furthermore, either

γL 6≈ βL or γH 6≈ βH . Suppose γL 6≈ βL (the other case is analogous). If

γL < βL then there is a signal profile s such that the sender prefers outcome

y from RL, but on which RL prefers outcome n (which implies that RH also

prefers outcome n). There are now two cases: If on realized profile s the sender

prefers outcome y also from RH , then she can deviate to the message (g . . . g).

This is a strict improvement, since it leads to her most preferred outcomes,

(y, y). If on realized profile s the sender prefers outcome n from RH , then she

can deviate to message s, leading to her most preferred outcomes.

If, on the other hand, γL > βL, then there is a signal profile s such that

the sender prefers outcome n from RL, but on which RL prefer outcome y.

Furthermore, we can assume that RH prefers outcome n on realization s.

Again there are two cases: If on realized profile s the sender prefers outcome
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n also from RH , then she can deviate to the message (b . . . b). This is a strict

improvement, since it leads to her most preferred outcomes, (n, n). If on

realized profile s the sender prefers outcome y from RH , then she can deviate

to message (g . . . g), which, while not leading to her most preferred outcome,

is still a strict improvement: it leads from outcomes (y, n) to outcomes (y, y),

which she prefers.

Proof of Claim 2: If there is a FIE under centralization, then the fully-

informative strategy τ is optimal for the receiver given the induced decision

rules r(τ). By the main observation of McLennan (1998), a strategy profile

that is optimal amongst all strategy profiles is an equilibrium in a common

value game. Thus, τ is an equilibrium profile in the decentralized setting,

given r(τ). Thus, it is an equilibrium, and constitutes a FIE.

F Proof of Theorem 6

To simplify notation, in this section we let N + 1 be the number of voters.

Furthermore, in this section we will use the bias uncertainty interpretation of

the model: there are two types of receiver R, namely RH and RL, where the

former is realized with probability h and the latter with probability ` = 1−h.

Furthermore, with some abuse of notation also denote by h the event (R = RH)

and by ` the event (R = RL). This has the benefit of simplifying notation, as

then we can denote by pivi(σ)
def
= (` ∩ v−i = kL(σ)) ∪ (h ∩ v−i = kH(σ)).

F.1 When is there no mixed equilibrium?

Fix some strategy profile σ. Let kL = kL(σ) and kH = kH(σ), when there are

N + 1 senders. Fix an arbitrary voter i, and again denote by kL (respectively,

kH) the event that, out of the remaining N voters, kL (respectively, kH) vote

y. Then there is some real c ≥ 0 for which P (kL) = c · P (kH). Thus, we can

write
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P (θ = G|pivi) =
P (G ∩ kL ∩ `) + P (G ∩ kH ∩ h)

P (kL ∩ `) + P (kH ∩ h)

=
` · P (G|kL) · P (kL) + h · P (G|kH) · P (kH)

` · P (kL) + h · P (kH)

=
c`P (G|kL) + hP (G|kH)

c`+ h
.

Now, if under σ the voters mix on signal si = g, then σ is not an equilibrium

when

P (θ = G|pivi) =
c`P (G|kL) + hP (G|kH)

c`+ h
> 1− p

⇔ c` (P (G|kL)− 1 + p) > h (1− p− P (G|kH))

⇔ c <
h (P (G|kH)− (1− p))
` (1− p− P (G|kL))

.

If, on the other hand, voters mix on signal si = b, then σ is not an equilib-

rium when

P (θ = G|pivi) =
c`P (G|kL) + hP (G|kH)

c`+ h
> p

⇔ c <
h (P (G|kH)− p)
` (p− P (G|kL))

.

Thus, if c = P (kL)/P (kH) is bounded above by a constant independent

of N then Theorem 6 will follow by choosing a sufficiently large h (and, by

symmetry, a sufficiently small h).

We will proceed by consider two potential equilibrium profiles σ: the first

are ones in which voters mix on signal si = g, and the second are ones in

which the mix on signal si = b. Note that mixing on both signals cannot be

an equilibrium.

We begin with a claim.

Claim 4 Let kH and kL be the thresholds for the high and low type of receiver,
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respectively, when senders vote fully-informatively: kH = kH(τ) and kL =

kL(τ). Then for any strategy profile σ, the respective thresholds kH = kH(σ)

and kL = kL(σ) satisfy kH − kL ≤ 2(kH − kL) + 2.

Proof: We first make two preliminary claims. First, since kL and kL are

pivotal for the low-type receiver under σ and τ , respectively, it must be the

case that P (G|v = kL + 1, σ) ≥ βL and P (G|v = kL, τ) < βL, and so P (G|v =

kL + 1, σ) > P (G|v = kL, τ). Similarly, P (G|v = kH + 1, τ) ≥ βH > P (G|v =

kH , σ).

Second, we argue that the informational value of two y votes under σ is

higher than the value of one y vote under τ . More formally, fix some β ∈ (0, 1).

Consider two senders, i and j, playing according σ, fix some profile of votes

v−(i,j) of the other voters, and suppose P (θ = G|vi = vj = n, v−(i,j), σ) ≥ β.

Consider also one sender, k, playing according to the fully-informative strategy

τi, fix some profile of votes v′−k of the other voters, and suppose P (θ = G|vk =

n, v−k, τ) = β. Then we claim that P (θ = G|vi = vj = y, v−(i,j), σ) ≥ P (θ =

G|vk = y, v−k, τ).

To see this, consider first the case in which senders mix on signal si = g

under σ. This means that when vi = vj = y, it must be the case that si = sj =

g. What about vi = vj = n? In the limit, when senders mix with probability

1, the event vi = vj = n yields no information. Thus, P (θ = G|vi = vj =

n, v−(i,j), σ) ≤ P (G|v−(i,j), σ). Thus,

P (θ = G|vk = n, v−k, τ) = β ≤ P (θ = G|vi = vj = n, v−(i,j), σ) ≤ P (G|v−(i,j), σ).

Note that P (G|vk = n, v−k, τ) = P (G|sk = n, v−k, τ). Adding two good signals

is equivalent to changing sk = b to sk = g, yielding

P (G|vk = y, v−k, τ) = P (G|sk = g, v−k, τ)

≤ P (G|si = sj = g, v−(i,j), σ) = P (G|vi = vj = y, v−(i,j), σ),

as claimed. Similarly, if σ is such that senders mix on signal si = b, then when
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vi = vj = n, it must be the case that si = sj = b. Additionally, in the worst

case of mixing with probability 1, the event vi = vj = y yields no information,

and so P (G|vi = vj = y, v−(i,j), σ) ≥ P (G|v−(i,j), σ). Thus,

P (G|vk = n, v−k, τ) = β ≤ P (G|vi = vj = n, v−(i,j), σ) = P (G|si = sj = b, v−(i,j), σ).

Again, note that P (G|vk = n, v−k, τ) = P (G|sk = b, v−k, τ). Adding two good

signals is equivalent to changing sk = b to sk = g, and canceling the signals

si = sj = b, yielding

P (G|vk = y, v−k, τ) = P (G|sk = g, v−k, τ)

≤ P (G|v−(i,j), σ) ≤ P (G|vi = vj = y, v−(i,j), σ),

as claimed.

Given these two preliminary claims, we can now argue that kH − kL ≤
2(kH−kL)+2. Suppose towards a contradiction that kH−kL > 2(kH−kL)+2.

We begin with a profile v = kL, and ask how many n votes must be changed to

y votes in order to yield a profile with v′ = kH . Changing one n vote to a y vote

leads to the profile v1, and using our first observation from above we know that

P (G|v1, σ) > P (G|kL, τ). Now, change 2 more n votes to y votes in v1 leading

to v3, and note that the second observation above implies that P (G|v3, σ) ≥
P (G|kL + 1, τ). Iteratively keep changing 2 more n vote to y votes, each time

changing vm to vm+2, and do this kH − kL more times. This leads to a profile

v2(kH−kL)+2, with the property that P (G|v2(kH−kL)+2, σ) ≥ P (G|kH + 1, τ).

Recall the first observation above, that P (G|kH + 1, τ) > P (G|kH , σ). Since

it implies that P (G|v2(kH−kL)+2, σ) ≥ P (G|kH , σ), it must be the case that

v2(kH−kL)+2 ≥ kH and so kL + 2(kH − kL) + 2 ≥ kH . This contradicts the

assumption that kH − kL > 2(kH − kL) + 2, completing the proof.
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F.2 Bound on P (kL)/P (kH) when mixing on si = g

Let q = σ(g), the probability of voting mi = y on signal si = g. For each

t ∈ {h, `} define

β̂t
def
= P (G|kt) =

P (kt|G)P (G)

P (kt)
,

the posterior on (θ = G) when kt out of N voters vote y. Recall that if kt

voters out of N + 1 vote y then this is insufficient to persuade the receiver of

type t, whereas if kt + 1 out of N + 1 vote y then this is sufficient. From this,

it follows that
1− p
p
· βt ≤ β̂t <

p

1− p
· βt.

Now,

c =
P (kL)

P (kH)
=
β̂H

β̂L
· P (kL|G)

P (kH |G)

=
β̂H

β̂L
·
(
N
kL

)
(pq)kL(1− pq)N−kL(

N
kH

)
(pq)kH (1− pq)N−kH

=
β̂H

β̂L
· kH !(N − kH)!

kL!(N − kL)!
· (1− pq)kH−kL

(pq)kH−kL

<
β̂H

β̂L
· kH !(N − kH)!

kL!(N − kL)!
·
(

1

pq
− 1

)kH−kL
. (2)

Observe that
kH !(N − kH)!

kL!(N − kL)!
<

(
kH

N − kH

)kH−kL
. (3)

We will now bound
(

1
pq
− 1
)kH−kL

from above. We know the posterior on

(θ = G) given a profile of kL votes for y out of a total of N + 1 votes must be
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at most βL. Furthermore, P (G|kL) = P (kL|G)
P (kL|G)+P (kL|B)

. Thus,

1

P (G|kL)
= 1 +

P (kL|B)

P (kL|G)
= 1 +

((1− p)q)kL(1− (1− p)q)N−kL+1

(pq)kL(1− pq)N−kL+1
≥ 1

βL

⇔
(

1− p
p

)kL (1− q + pq

1− pq

)N−kL+1

≥ 1

βL
− 1

⇔ 1− q + pq

1− pq
≥

((
1

βL
− 1

)(
p

1− p

)kL) 1
N−kL+1

⇔ q ≥ R− 1

pR + p− 1
,

where

R
def
=

((
1

βL
− 1

)(
p

1− p

)kL) 1
N−kL+1

.

The above inequalities hold if and only if

1

q
≤ p+

2p− 1

R− 1
=
pR− (1− p)

R− 1
.

This holds if and only if
1

pq
− 1 ≤ 2p− 1

p(R− 1)
.

Let us now bound R− 1 from below, which will provide the desired upper

bound on 1/(pq)− 1.

Claim 5 There is a positive number D, independent of N , for which R− 1 >

D · kL
N−kL+1

.
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Proof: Suppose not. Then for any positive D

((
1

βL
− 1

)(
p

1− p

)kL) 1
N−kL+1

− 1 ≤ D · kL
N − kL

⇒

((
1

βL
− 1

)(
p

1− p

)kL) 1
N−kL+1

≤ 1 +D · kL
N − kL + 1

⇒
(

1

βL
− 1

)(
p

1− p

)kL
≤
(

1 +D · kL
N − kL + 1

)N−kL+1

≤ eDkL

⇒
(

1

βL
− 1

) 1
kL

· p

1− p
≤ eD.

Note that
1

βL
− 1 >

1

1− β
− 1 =

p2

(1− p)2
> 1,

and so the LHS above,
(

1
βL
− 1
) 1

kL · p
1−p , is strictly greater than p/(1−p) > 1.

In contrast, the RHS, eD, approaches 1 from above as D decreases. This is

thus a contradiction for small enough D > 0.

Plugging in the conclusion of Claim 5 we get that

1

pq
− 1 ≤ (2p− 1)(N − kL + 1)

pDkL
,

and so (
1

pq
− 1

)kH−kL
<

(
2p+D − 1

pD

)kH−kL (N − kL + 1

kL

)kH−kL
.

Combining this with (3) into (2) yields the bound

P (kL)

P (kH)
<
β̂H

β̂L
·
(

kH
N − kH

)kH−kL
·
(

2p+D − 1

pD

)kH−kL
·
(
N − kL + 1

kL

)kH−kL
=
β̂H

β̂L
·
(

2p+D − 1

pD

)kH−kL
·
(
kH(N − kL + 1)

kL(N − kH)

)kH−kL
.
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Observing that(
kH
kL

)kH−kL
=

(
1 +

kH − kL
kL

)kH−kL
< e(kH−kL)

2

and that(
N − kL + 1

N − kH

)kH−kL
=

(
1 +

kH − kL + 1

N − kH

)kH−kL
< e(kH−kL+1)2

yields

c =
P (kL)

P (kH)
<
β̂H

β̂L
·
(

2p+D − 1

pD

)kH−kL
· e2(kH−kL+1)2 .

To see that this bound is independent of N , notice first that β̂H/β̂L is bounded

above independently of N . Furthermore, the difference kH − kL is bounded

above independently of N (for fixed βH and βL) by Claim 4 and the observation

that kH − kL is independent of N .

F.3 Bound on P (kL)/P (kH) when mixing on si = b

Let q = σi(b) be the probability of voting mi = n on signal si = b.

Recall that

β̂t
def
= P (G|kt) =

P (kt|G)P (G)

P (kt)
.

Thus,

c =
P (kL)

P (kH)
=
β̂H

β̂L
· P (kL|G)

P (kH |G)

=
β̂H

β̂L
·
(
N
kL

)
(1− (1− p)q)kL((1− p)q)N−kL(

N
kH

)
(1− (1− p)q)kH ((1− p)q)N−kH

=
β̂H

β̂L
· kH !(N − kH)!

kL!(N − kL)!
·
(

(1− p)q
1− (1− p)q

)kH−kL
. (4)
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Now,
kH !(N − kH)!

kL!(N − kL)!
<

(
kH

N − kH

)kH−kL
.

If N − kH > kH/C for some positive constant C then the above inequality

is at most CkH−kL . Furthermore, as (1−p)q
1−(1−p)q ≤

1−p
p

, this bounds P (kL)
P (kH)

from

above by some constant (that depends on C). We will choose C below, in the

proof of Claim 6.

WhenN−kH ≤ kH/C we need a tighter bound. To bound
(

(1−p)q
1−(1−p)q

)kH−kL
≤(

(1−p)q
p

)kH−kL
from above in that case, let us bound q from above. We know

the posterior on (θ = G) given a profile of kH + 1 votes for y out of a total of

N + 1 votes must be at least βH , and that P (G|kH) = P (kH |G)
P (kH |G)+P (kH |B)

. Thus,

1

P (G|kH)
= 1 +

P (kH |B)

P (kH |G)
= 1 +

(1− pq)kH+1(pq)N−kH

(1− (1− p)q)kH+1((1− p)q)N−kH
≤ 1

βH

⇔
(

p

1− p

)N−kH ( 1− pq
1− (1− p)q

)kH+1

≤ 1

βH
− 1

⇔ 1− pq
1− (1− p)q

≤

((
1

βH
− 1

)(
1− p
p

)N−kH) 1
kH+1

⇔ q ≤ R− 1

(1− p)R− p
,

where

R
def
=

((
1

βH
− 1

)(
1− p
p

)N−kH) 1
kH+1

.

Now, βH > p2/(p2 + (1 − p)2), and so 1/βH − 1 < (1 − p)2/p2. Plugging this

into the definition of R we get that

R <

(
1− p
p

)N−kH+2

kH+1

< 1.
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Thus, we have

q ≤ R− 1

(1− p)R− p
=

1−R
p− (1− p)R

≤ 1−R
2p− 1

.

We will now bound R from below, thus bounding 1−R from above, leading

to an upper bound on q.

Claim 6 There is a number D < kH+1
N−kH

, independent of N , for which R >

1−D · N−kH
kH+1

.

Proof: Suppose not. Then for any D < kH+1
N−kH((

1

βH
− 1

)(
1− p
p

)N−kH) 1
kH+1

≤ 1−D · N − kH
kH + 1

⇒
(

1

βH
− 1

) 1
N−kH

· 1− p
p
≤
(

1−D · N − kH
kH + 1

) kH+1

N−kH

≤ e−D.

Recall that βH > β, and so

1

βH
− 1 <

1

β
− 1 =

(1− p)2

p2
< 1.

Thus, (
1

βH
− 1

) 1
N−kH

>
1

βH
− 1,

and so it must be that (
1

βH
− 1

)
· 1− p

p
≤ e−D.

The is a contradiction for large enough D, since the LHS is a positive constant,

whereas the RHS approaches 0 from above as D increases.

The remaining detail is to confirm that one can indeed make D large

enough, while still maintaining the inequalityD < kH+1
N−kH

. Recall thatN−kH ≤
kH/C, and note that kH/C < (kH + 1)/C. Thus, kH+1

N−kH
> C, so D < kH+1

N−kH
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whenever D ≤ C. So as long as C is chosen to be large enough, we can choose

D = C and simultaneously satisfy(
1

βH
− 1

)
· 1− p

p
> e−D.

Plugging in the previous claim we get that

q ≤ 1−R
2p− 1

≤ D · N − kH
(2p− 1)(kH + 1)

.

and so (
(1− p)q

1− (1− p)q

)kH−kL
≤
(
D · (1− p)(N − kH)

p(2p− 1)kH

)kH−kL
.

Combining this with (4) yields

P (kL)

P (kH)
<
β̂H

β̂H
·
(

kH
N − kH

)kH−kL
·
(
D(1− p)
p(2p− 1)

)kH−kL
·
(
N − kH
kH

)kH−kL
=

(
D(1− p)
p(2p− 1)

)kH−kL
,

which is independent of N since the difference kH − kL is bounded above

independently of N , for fixed βH and βL (by Claim 4 and the observation that

kH − kL is independent of N).

G Asymmetric receivers

The situation is a bit more complicated when the receivers are not symmetric.

If there is no FIE for some N , then P (θ = G|pivi) 6∈ [1 − p, p]. Whether or

not increasing the number of senders leads to the existence of a FIE depends

on whether P (θ = G|pivi) is greater than p or less than 1− p.

Proposition 3 Suppose βH ≥ 1 − βL and that P (θ = G|pivi) 6∈ [1 − p, p].

Then there is a number p > p for which the following holds:
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• If P (θ = G|pivi) 6∈ [1 − p, p] then increasing the number of senders will

not lead to the existence of a FIE.

• If P (θ = G|pivi) ∈ (1− p, 1− p) then sufficiently increasing the number

of senders will lead to the existence of a FIE.

A symmetric proposition holds for the case in which βH ≤ 1− βL.

Proof of Proposition 3: The assumption βH ≥ 1 − βL implies that

kH ≥ N − kL. We have

P (θ = G|pivi) =
P (G ∩ pivi)

P (pivi)

=
P (G ∩ kL ∩ `) + P (G ∩ kH ∩ h)

P (kL ∩ `) + P (kH ∩ h)

=
` ·
(
N
kL

)
pkL(1− p)N−kL + h ·

(
N
kH

)
pkH (1− p)N−kH

` ·
(
N
kL

)
pkL(1− p)N−kL + h ·

(
N
kH

)
pkH (1− p)N−kH + ` ·

(
N
kL

)
(1− p)kLpN−kL + h ·

(
N
kH

)
(1− p)kHpN−kH

=
` ·
(
N
kL

)
pkH+kL−N (1− p)kH−kL + h ·

(
N
kH

)
p2kH−N

` ·
(
N
kL

)
pkH+kL−N (1− p)kH−kL + h ·

(
N
kH

)
p2kH−N + ` ·

(
N
kL

)
(1− p)kH+kL−NpkH−kL + h ·

(
N
kH

)
(1− p)2kH−N

=
`C(N, kH , kL)pkH+kL−N (1− p)kH−kL + hp2kH−N

`C(N, kH , kL)pkH+kL−N (1− p)kH−kL + hp2kH−N + `C(N, kH , kL)(1− p)kH+kL−NpkH−kL + h(1− p)2kH−N

=
`C(N, kH , kL)pkH+kL−N (1− p)kH−kL + hp2kH−N

`C(N, kH , kL) (pkH+kL−N (1− p)kH−kL + (1− p)kH+kL−NpkH−kL) + h (p2kH−N + (1− p)2kH−N )

where C(N, kL, kH)
def
=
(
N
kL

)
/
(
N
kH

)
. Let kH = N/2 + k̂H and kL = N/2 − k̂L.

The assumption that βH ≥ N −βL implies that k̂H ≥ k̂L. With this change of

variables, we get that kH + kL−N = k̂H − k̂L, that 2kH −N = 2k̂H , and that

kH − kL = k̂H + k̂L. Thus, all three kinds of exponents above depend only on

k̂H and k̂L, and in particular are independent of N . It remains to examine the

dependence of C(N, kL, kH) on N .

We will show that C(N, kL, kH) decreases as N increases. Note that

C(N, kL, kH) =

(
N
kL

)(
N
kH

) =
kH !(N − kH)!

kL!(N − kL)!
,
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and so
C(N + 1, kL, kH)

C(N, kL, kH)
=
N + 1− kH
N + 1− kL

≤ 1,

since kH ≥ kL. Thus, increasing N has the same effect as decreasing ` relative

to h. This has the effect of increasing P (θ = G|pivi). Thus, if the posterior

P (θ = G|pivi) > p, then this same inequality will also hold for larger number

of voters.

If the posterior P (θ = G|pivi) < 1 − p, increasing the number of voters

will lead to a slightly higher posterior, and so may render sincerity an equi-

librium. However, this is not possible for all parameters. Observe first that

limN→∞C(N, kL, kH) = 1. Let 1− p be equal to

`pkH+kL−N(1− p)kH−kL + hp2kH−N

` (pkH+kL−N(1− p)kH−kL + (1− p)kH+kL−NpkH−kL) + h (p2kH−N + (1− p)2kH−N)
.

This is the final value of the posterior from above, but setting C(N, kL, kH) =

1. Note that it is independent of N . If 1 − p ≤ 1 − p then increasing the

number of voters will not lead to a posterior that is greater than 1 − p, and

for any finite N the posterior will be strictly less than 1− p. Thus, there will

be no FIE for any number of senders.

If 1− p > 1− p, however, then for sufficiently many senders the posterior

will be sufficiently close to 1− p, and so strictly greater to 1− p. At this point

there will be a FIE.
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