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Abstract

The classic herding model examines the asymptotic behavior of agents who

observe their predecessors’ actions as well as a private signal from an exogenous

information structure. In this paper we introduce a self-interested sender into the

model and study her problem of designing this information structure. If agents

cannot observe each other the model reduces to Bayesian persuasion. However,

when agents observe predecessors’ actions, they may learn from them, potentially

harming the sender. We identify necessary and sufficient conditions under which

the sender can nevertheless obtain the same utility as when the agents are unable

to observe each other.
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1 Introduction

A striking insight from information economics is that rational agents who learn from oth-

ers may fail to fully aggregate information. A hallmark example of such market failure is

the classic observational learning model, in which agents act sequentially after observing

their predecessors’ actions as well as a signal from an exogenous information structure.

The resulting market failure has been used to explain a variety of phenomena, ranging

from IPO underpricing and microloan markets to software adoption and crowdfunding.1

In the observational learning model, the failure to aggregate information leads agents

to herd on a potentially inferior action, with the particular action depending on the

exogenous information structure. Where does this information structure come from? In

all the examples above, the information is provided by one of the parties involved: The

issuer of the IPO publishes a prospectus, the potential borrower posts credit informa-

tion and personal attributes, and the software developer and innovator share product

information. However, these parties are not disinterested; on the contrary, they have

preferences over the resulting herd. The question, then, is to what extent they can

determine the direction of the herd by exerting control over the provision of information.

We consider this question through the lens of Bayesian persuasion. Bayesian persua-

sion examines how an informed sender should share information in order to manipulate

others to act in a way that benefits her. We suppose such a sender designs the informa-

tion structure in the observational learning model, and ask, can the sender manipulate

the crowd as well as she can manipulate any individual?

If agents cannot observe each other and their only source of information is the signal,

then our model reduces to the standard Bayesian persuasion setting. However, when

agents can observe each other they obtain additional information. We identify necessary

and sufficient conditions under which the sender can nevertheless obtain the same utility

as when the agents are unable to observe each other.

Our proof is constructive and provides an ε-optimal information structure. In con-

trast with the classic Bayesian persuasion result where, in a binary-state setting, two

signals suffice for the sender to attain the optimal outcome, our sender requires a much

richer set of signals.

1See Welch (1992), Zhang and Liu (2012), Duan et al. (2009), and Thies et al. (2016), respectively.
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To further motivate our work consider the challenge of designing marketing strate-

gies in online retail. In such settings, buyers obtain signals about products’ qualities

and characteristics from advertisements and product information shared by the seller.

For instance, on Amazon.com, listed products contain brief descriptions, labels such as

“Amazon’s Choice” or “Small Business,” and photographs. However, in addition to

these signals, buyers typically also learn about the volume of previous purchases. When

contemplating the purchase of a product, a buyer will use the signal and the information

inferred from the volume of previous purchases to make a decision. Such observational

learning can lead to herding (see, e.g., Chen et al., 2011; Tucker and Zhang, 2011).

A seller’s marketing strategy in this market consists of designing the advertisements

and provision of product information that make up buyers’ signals.2 If these signals

were the buyers’ only source of information, the seller would design them in a way

that maximizes each buyer’s probability of purchasing. When buyers have information

about previous purchases, however, herding can lead to a reduction in sales. In this

paper we identify conditions under which the seller can neutralize this mitigating effect

of information about previous purchases, and can design signals that lead to the sales

volume achievable without such information. Section 2 below illustrates our result in

the context of this retail example.

1.1 Related Literature

Our work lies in the intersection of two rich and vibrant fields of research, herding

(Bikhchandani et al., 1992; Banerjee, 1992) and Bayesian persuasion (Kamenica and

Gentzkow, 2011). The primary insight of the herding literature is that market failure

is possible and information need not be aggregated. This observation inspired a design

question (Sgroi, 2002; Acemoglu et al., 2011; Bahar et al., 2020; Smith et al., 2020;

Arieli et al., 2021): How can a benevolent designer control information transmission

among agents to improve information aggregation and induce more efficient outcomes?

Much of this work focuses on social networks where agents observe only a partial subset

of previously active agents. We take an orthogonal perspective and focus on the optimal

design of a self-motivated sender who has no control over the observability structure.

2See Kamenica and Gentzkow (2011) for a discussion of Bayesian persuasion as a model for the

provision of product information.
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As a first model we maintain the standard assumption that agents observe the actions

taken by all past agents.

Our paper is also related to a line of work within the Bayesian persuasion literature

which studies sequential information design (such as Au, 2015; Ely, 2017; Li and Norman,

2021; Lorecchio and Monte, forthcoming). The work of Lorecchio (2022) is most-closely

related: He considers a binary-action observational learning model with a designer who

provides agents with additional information, and derives conditions under which the

designer prefers observational learning and under which she prefers to induce a herd

from the start. In this line of work the design challenge is dynamic, and the resulting

signaling scheme can change from one stage to another. In contrast, our sender commits

to one information structure at the beginning, and each agent’s signal is then drawn from

that structure. The static information structure is canonical in the herding literature,

and it fits the examples in the introduction well: For instance, the IPO prospectus and

the retailer’s posted photographs and product information often remain unchanged after

publication. We note that, if our sender could commit to different structures for different

agents, the problem would reduce to the standard Bayesian persuasion problem: The

sender would commit to the optimal structure for the first agent, and subsequently reveal

no further information.

Finally, our paper is related to work on Bayesian persuasion with informational

spillovers between agents, such as Candogan (2020), Egorov and Sonin (2020), and

Galperti and Perego (2020). The main difference is that these papers model spillovers

through direct information transmission on a network, whereas in our paper spillovers

occur indirectly through agents’ actions.

2 Illustrative Examples

Recall that, in the Bayesian persuasion model, when the state of the world is binary, the

sender’s optimal information structure induces posterior beliefs that coincide with the

two distributions corresponding to the concavification of the sender’s utility function.

Our main question in this paper reduces to the question of whether it is possible to

design an information structure such that the public belief—the posterior implied by the

sequence of agents’ actions thus far—will converge to one of these two posteriors. We
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turn to two examples that illustrate the issues involved.

Example 1. A retailer sells identical copies of a product to many consumers. With

probability µ = 1
5

the product is of high quality and with probability 4
5

it is of low

quality. Consumers’ preferences are such that they have a positive expected utility from

purchasing the product whenever their belief that the product is high quality is at least

T = 1
4
.

Consumers arrive at the market sequentially, and each observes the purchase decisions

made by prior consumers as well as a conditionally independent signal about the quality

of the product. The design of the signal is done by the retailer, whose goal is to maximize

sales.

From the herding literature we know that any such design will eventually result in

all consumers, from some point on, choosing the same action. Thus, the retailer’s goal is

to design an information structure that maximizes the probability that consumers herd

on the purchase action.

What information structure should the retailer choose? One possible structure is the

fully revealing one, in which the quality of the product is fully revealed. In this case,

consumers will purchase the product if it is revealed to be of high quality, which happens

with probability µ = 1
5
.

Can the retailer do better? One may be tempted to let the retailer commit to

the optimal information structure from the single-receiver Bayesian persuasion problem

(Kamenica and Gentzkow, 2011). This information structure contains two signals, {h, `}.

If the product is high quality, then the realized signal is always h, and if it is low quality,

then the signal is a randomization of h and `. The randomization is such that, on signal

h, the consumer’s belief that the product is high quality is T = 1
4
, while on the opposite

signal the belief is zero. This structure yields the receiver expected utility 4
5

from the

first consumer, which is optimal. However, in our sequential setting, this structure is

no better than the fully revealing one: If a consumer chooses not to purchase, then

all subsequent agents learn with certainty that the product is low quality. Thus, if the

product is indeed low quality, then at some point some consumer will obtain signal `, will

choose not to purchase, and then all subsequent consumers will also refuse to purchase.

A simple way to increase the probability that consumers herd on the purchase deci-

sion is to choose an information structure that reveals the quality of the product with
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probability p and the opposite quality with probability 1−p. Choose p so that a consumer

with prior µ = 1
5

and signal h updates to posterior T = 1
4

(and so makes a purchase).

With this signal, the probability of herding on the purchase action is close to 52
185

> 1
5
,

which is better than full revelation.

For intuition, observe that if the first consumer obtains signal ` and chooses not

to purchase the product, then all subsequent retailers will also choose not to purchase.

This is because, regardless of their signal, their belief remains below T , and so their

choice does not reveal any new information to subsequent consumers. Alternatively, if

the first two consumers obtain signal h and purchase the product, then all subsequent

consumers will also make a purchase, regardless of their signals. Thus, eventually the

belief about the quality of the product will either be the one induced by one ` signal or

the one induced by two h signals, starting from the prior. The probability of each such

belief must be such that the expected posterior is equal to the prior µ = 1
5
. A simple

calculation implies that the probability of a herd on the purchase decision is 52
185

.

We now turn back to our research question: Is it possible for the retailer to design an

information structure that leads to expected utility equal to the concavification of her

utility at the prior, namely, 4
5
? Recall that the threshold for buying is T = 1

4
, and so

under the concavification the public belief must converge to one of the two posteriors, 0

and 1
4
.

For this example, our result is positive. In particular, for any ε > 0 it is possible

to construct an information structure for which the public belief converges to either ε

or 1
4

+ ε. Under this information structure agents will herd on the no-buy action with

probability close to 1
5

and on the buy action with probability close to 4
5
, which delivers

the retailer expected utility close to the optimal 4
5
.

In contrast with the binary information structure that is sufficient for this maximal

utility in the Bayesian persuasion setting, the one we turn to describe is quite rich. In

what follows we refer to signals that sway the agent’s belief towards the high quality

state as high signals and those that sway it the other way as low signals.

First, note that in order for the public belief converge to ε, it must be that if the

public belief is greater than ε then for some signal the next agent will, nevertheless, take

the buy action; for otherwise, learning will stop and the public belief will converge to

a number greater than ε. On the other hand, this should not happen when the public
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Figure 1: The dashed line depicts the sender’s indirect utility as a function of the agent’s

(posterior) belief. The solid curve is the concavification of that utility function.

belief is ε or less. This suggests an upper bound on the high signals. Similarly, whenever

the belief is higher than 1
4

+ ε, no agent should take the no-buy action and sway the

public belief away. This induces a lower bound on the low signals and implies that they

sway the public belief downwards gently. Finally, in order for the belief to converge to

1
4

+ε it must be the case that the belief never jumps beyond that value. This means that

as long as the public belief is between ε and 1
4

+ ε, it should either decrease very gently

or jump to 1
4

+ ε. Our main result shows that this is possible. The idea is to construct

an information structure whose distribution over posteriors decays exponentially around

the prior. This guarantees that agents’ actions do not change their successors’ beliefs

too much, but at the same time also that beliefs cannot get stuck suboptimally.

Can the retailer always guarantee the optimal value? The next example demonstrates

that she cannot.

Example 2. Suppose the agents have four actions, and so A = {a1, a2, a3, a4}. Action a1

is optimal in the belief interval
[
0, 1

4

]
, action a2 is optimal in

[
1
4
, 1
2

]
, action a3 is optimal

in
[
1
2
, 4
5

]
, and action a4 is optimal in

[
4
5
, 1
]
. The payoffs to the retailer are v(a1) = 0 ,

v(a2) = 3, v(a3) = 4, and v(a4) = 1. This is illustrated in Figure 1.

Now suppose towards a contradiction that for the prior µ = 9
10

, the value of the

concavification can be attained. This means that the public beliefs must converge either

to the vicinity of µ1 = 4
5

or to the vicinity of µ2 = 1. However, our main result shows
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that this is impossible. To see the intuition, observe that, in order for the public belief

to approach 1, there must be some strong low signal. Otherwise, the public belief might

converge to a number significantly lower than 1. However, in this case, the public belief

will never end up close to 4
5
. Given any public belief in the interval

[
1
2
, 4
5

]
, the next agent

will receive the aforementioned low signal with positive probability, in which case his

belief will fall below 1
2

and he will play action a1 or a2, leading the public belief to some

value less than 1
2
. Thus, the public belief cannot converge to any value in interval

[
1
2
, 4
5

]
.

3 Model

Consider a standard herding model as formulated by Smith and Sørensen (2000). There

is a binary state space Ω = {0, 1} with a common prior µ that represents the prior

probability of state ω = 1, and a countable set of agents N = {1, 2, . . . , } indexed by the

time parameter t. There is a finite set of actions A = {a1, . . . , a`}, and a utility function

u : Ω × A → R common to all agents. One can write the optimal action for the agents

with respect to u as a function of the belief λ ∈ ∆(Ω) = [0, 1]. Agents are expected

utility maximizers, and so the set of probabilities for which each action is optimal is

a segment. We henceforth assume that action ai is optimal for λ ∈ [xi−1, xi], where

0 = x0 < x1 < x2 < · · · < x` = 1.3 Finally, an information structure G = (S,G0, G1) is

comprised of a measurable space S and two probability measures Gω ∈ ∆(S) for ω ∈ Ω.

We often identify a posterior λ ∈ [0, 1] with its log-likelihood ratio lr(λ) = log
(

λ
1−λ

)
.

Thus, for i = 1, . . . , `, the intervals [xi−1, xi] in which action ai is optimal are translated

to Ji = [yi−1, yi], where yi = lr(xi) ∈ R ∪ {−∞,∞} for every 0 ≤ i ≤ `. For any such

interval, let |Ji| = yi − yi−1, and note that |J1| = |J`| = ∞. All other intervals are

of finite length. Over these finite-length intervals we make the simplifying genericity

assumption that |Ji| 6= |Jk| whenever i 6= k, an assumption that allows us to avoid

imposing tie-breaking restrictions on the agents’ equilibrium behavior.

Given a herding model, the game is played as follows. At time t = 0 the unobserved

state ω is realized according to µ. At each subsequent period t agent t observes the history

of actions that were played by his predecessors, ht ∈ At−1, receives a private signal st

that is drawn independently according to Gω, and chooses an action at ∈ A. A strategy

3This rules out the existence of distinct actions that yield the agents identical utilities in both states.
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of agent t is a measurable mapping σt : At−1 × S → ∆(A). As usual, a strategy profile

σ = (σt)t∈N is a Bayesian Nash equilibrium if for every agent t the strategy σt maximizes

his expected payoff given σ−t. A strategy profile σ and an information structure G

generate the public belief martingale {µt}t∈N, where µt = PG,σ(ω|ht) represents the

conditional probability of ω = 1 given agent t’s observed history. By the martingale

convergence theorem the sequence {µt}t∈N converges almost surely to a limit µ∞.

In addition, we consider a sender (designer, market maker) with a per-period utility

v : A → R from any action of the agent.4 Given an information structure G and a

corresponding equilibrium σ, the agents will eventually herd on some action (Smith and

Sørensen, 2000). That is, from some finite time onward all agents will play the same

action, say a∗. We identify the sender’s utility as V (G, µ, σ) = EG,σ[v(a∗)].5

We let V (G, µ) be the infimum of V (G, µ, σ) across all Bayesian equilibria σ of the

herding game that correspond to information structure G and prior µ. We are interested

in V (µ) = supG V (G, µ), the sender’s optimal outcome, as well as the corresponding

information structure with which this utility can be (almost) obtained.

We follow the Bayesian persuasion literature and define the indirect utility v∗ :

∆(Ω) → R as the expected utility of the sender evaluated at the (sender-optimal) best

reply of the receiver. That is, v∗(λ) = v(a(λ)), where a(λ) the best reply of the receiver,

given belief λ, that is optimal for the sender.

Let V ∗(µ) be the optimal value for a sender in a Bayesian persuasion game with

a single receiver who has utility function u. By Aumann et al. (1995) and Kamenica

and Gentzkow (2011), V ∗(µ) is the concavification of v∗: It is the maximum value of

qv∗(µ) + (1 − q)v∗(µ) over all µ, µ, and q ∈ [0, 1] that satisfy µ = qµ + (1 − q)µ and

v∗(µ) ≥ v∗(µ). At the maximum, we say that V ∗(µ) is supported on µ and µ.6 For

k ≤ m let Ik and Im be the intervals on which µ and µ lie, in some order. Specifically,

if µ ≤ µ then µ ∈ Ik and µ ∈ Im, and, furthermore, since the sender’s utility is state

independent it must be that µ = xk−1 and µ = xm−1. Conversely, if µ ≥ µ then µ ∈ Ik
and µ ∈ Im, and specifically µ = xm and µ = xk.

Now, it is easy to see that V ∗(µ) ≥ V (µ) for every prior µ. Our main question is,

4We discuss state-dependent utilities in Section 5.
5An equivalent definition is V (G,µ, σ) = limδ→1(1 − δ)

∑
t∈N δ

t−1EG,σv(at). For a discussion re-

garding constant δ < 1, see Section 5.
6(µ, µ) are not necessarily unique.
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under what conditions does equality hold?

4 Main Result

In this section we state and discuss our main result, and then turn to its proof.

Theorem 1. V (µ) = V ∗(µ) if and only if V ∗(µ) is supported on beliefs µ and µ for

which the following hold:

• If µ ∈ Ik, µ ∈ Im, and µ ≤ µ, then |Jm| ≥ |Jk| > |Ji| for every integer i ∈ (k,m).7

• If µ ∈ Ik, µ ∈ Im, and µ ≥ µ, then |Jk| ≥ |Jm| > |Ji| for every integer i ∈ (k,m).

To understand the logic behind Theorem 1, suppose µ ≤ µ, and note that in order

to approximate V ∗(µ) the limit public belief martingale must converge to small neigh-

borhoods of µ and µ. The condition |Jk| > |Ji| guarantees the existence of a signal

distribution for which the public belief “skips” intermediate intervals and gets absorbed

in either Im or Ik.

Furthermore, when µ ≤ µ we have µ = xk−1, the farthest point from the prior µ on

Ik. In contrast, µ = xm−1, the closest point to µ in Im. This means that the public belief

martingale should be able to cross the interval Ik, but should never cross Im. This can

be achieved when |Jm| ≥ |Jk|.

We next outline the proof of the first direction of Theorem 1. Given a pair of posteri-

ors β ∈ Ik and β ∈ Im, Proposition 1 provides a sufficient condition over the information

structure F such that the limits of the public beliefs µ∞ lie arbitrarily close to β and β

for each equilibrium strategy. We prove this by characterizing which posteriors λ ∈ [0, 1]

are “fixed points” of the public-belief martingale (Lemmas 1 and 2) and by providing a

novel signal construction that yields β and β as limiting beliefs (Lemmas 3 and 4). We

then show that the pair (µ, µ) satisfies the condition of Proposition 1.

A simple case in which the conditions of Theorem 1 are satisfied is when there are only

two possible actions, as in Example 1. Another simple case is when the pair (ak, am) =

(a1, a`)—namely, the beliefs on which the concavification is supported correspond to

the respective optimal actions in the two states—since then the corresponding intervals

satisfy |Jk| = |Jm| =∞.

7By convention, if |Jk| =∞ and |Jm| =∞ then |Jk| = |Jm|.
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4.1 Proof of Theorem 1

Consider an information structureG = (S,G0, G1). As standard in the herding literature,

we identify G with a measure F ∈ ∆([0, 1]) that has expectation 1
2
, and that represents

the posterior distribution G generates for the prior 1
2
. More precisely, let G 1

2
∈ ∆(Ω×S)

be the measure that is induced by G and the prior µ = 1
2

over Ω×S. Let p(s) = G 1
2
(ω =

1|s) be the conditional probability of state ω = 1 given the signal s ∈ S. For every Borel

measurable subset B ⊆ [0, 1] let

F (B) = G 1
2
(p(s) ∈ B).

By the splitting lemma of Aumann et al. (1995), the identification goes in both directions:

Namely, every F ∈ ∆([0, 1]) with an expectation of 1
2

defines an information structure

with S = [0, 1]. In this case it holds that p(s) = s almost surely. We also note that any

such information structure F defines two probability measures, F0, F1 ∈ ∆([0, 1]), each

of which represents the conditional posterior distribution given state ω and prior 1
2
.8

Under this identification, we make use of the fact that if the public belief at time t

is µt and agent t receives a signal st, then, by Bayes’ rule, his posterior probability pt of

state ω = 1 satisfies pt
1−pt = µt

1−µt
st

1−st . Therefore, in particular, lr(pt) = lr(µt) + lr(st).

For clarity of the proof we make a simplifying genericity assumption that if V ∗(µ) >

v∗(µ), then V ∗(µ) is supported on exactly two points.

Definition 1. Consider a pair of posterior beliefs β, β ∈ [0, 1] such that β < µ < β.

Such a pair is feasible for µ if for every ε > 0 there exists an information structure

F such that, for any equilibrium of the herding game, it holds with probability 1 that

µ∞ ∈ (β − ε, β + ε) ∪ (β − ε, β + ε).

We will use the following auxiliary result.

Proposition 1. Consider a pair 0 < β < µ < β < 1 and let η = lr(β) and η = lr(β).

Assume η ∈ int(Jk) and η ∈ int(Jm), where 1 ≤ k < m ≤ `. If the following conditions

hold, then the pair is feasible for µ:

1. |Ji| < yk − η + η − ym−1 for every integer i ∈ (k,m);

2. yk − η < ym − η and η − ym−1 < η − yk−1.
8For more details see, e.g., Acemoglu et al. (2011) and Arieli et al. (2020).
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To prove Proposition 1 we will require several definitions and lemmas. For an informa-

tion structure F ∈ ∆([0, 1]), let αF = inf{x|F ([0, x]) > 0} and αF = sup{x|F ([0, x]) <

1} be its strongest negative and positive signals, respectively. The logic behind the

proof of Proposition 1 is as follows. If we take an information structure F with lr(αF ) =

ym−1 − η and lr(αF ) = yk − η, then the limit of the public belief µ∞ 6∈ (β, β) with

probability 1. This follows from the first condition of the proposition, which implies that

µ∞ 6∈ Ii for every i ∈ (k,m) (Lemma 1). Moreover, we will show that if µ∞ reaches either

a small left neighborhood of β or a small right neighborhood β, then it gets absorbed

(Lemma 2). The challenge is to construct an information structure F for which, in every

equilibrium, the public belief {µt}t∈N indeed reaches these neighborhoods. In Lemmas 3

and 4 we construct such a structure.

We make use of the following definition.

Definition 2. Given an information structure F , belief λ ∈ (0, 1) is a cascade point if,

whenever the game starts with λ as a prior, it holds that µt = λ for every t in every

equilibrium σ of the herding game. Conversely, λ is a continuation point if there exists

δ > 0 such that, for every equilibrium and every initial prior, µ∞ 6∈ (λ − δ, λ + δ) with

probability 1.

The following two lemmas characterize the cascade and continuation points of any

information structure F . The first is straightforward and its proof is omitted.

Lemma 1. Let F be an information structure with αF = α and αF = α. Let [x, y] ⊆

(xi−1, xi) for some 1 ≤ i ≤ `. If either lr(y) + lr(α) < yi−1 or lr(x) + lr(α) > yi, then

all points in [x, y] are continuation points. Moreover, if yi − yi−1 < lr(α) − lr(α), then

all points in [xi−1, xi] are continuation points. Conversely, if λ ∈ [xi−1, xi] such that

lr(λ) + lr(α) > yi−1 and lr(λ) + lr(α) < yi, then λ is a cascade point.

Lemma 2. Consider a pair 0 < β < µ < β < 1 that satisfies the conditions of Propo-

sition 1. Let ϕ = ym−1 − η and ϕ = yk − η. If F is any information structure with

α = lr−1(ϕ) =
exp(ϕ)

1+exp(ϕ)
and α = lr−1(ϕ) = exp(ϕ)

1+exp(ϕ)
, then there exists δ > 0 such that all

points in (β − δ, β) ∪ (β, β + δ) are cascade points. In addition, all points in (β, β) are

continuation points.

Proof. Note first that since −∞ < ϕ < 0 and 0 < ϕ < ∞, we have that 0 < α < 1
2
<
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α < 1. Also, by definition, η + ϕ = ym−1. Furthermore, by condition 2 of Proposition 1,

η + ϕ = η + yk − η < η + ym − η = ym.

Hence, for a sufficiently small constant r > 0, every ψ ∈ (η, η+ r) satisfies ψ+ϕ > ym−1

and ψ+ϕ < ym. Lemma 1 implies that lr−1(ψ) is a cascade point. Thus, for a sufficiently

small δ > 0, any λ ∈ (β, β + δ) is a cascade point. The fact that, for an appropriate

choice of δ > 0, every λ ∈ (β − δ, β) is a cascade point, is shown similarly.

We next show that all points in (β, β) are continuation points. Consider a point

ψ ∈ [yi−1, yi] for some integer i ∈ (k,m). By the first condition of Proposition 1 we have

that ϕ−ϕ > yi− yi−1. Therefore, Lemma 1 implies that in any equilibrium of the game

µ∞ 6∈ [xi−1, xi] with probability 1, and all points in [xi−1, xi] are continuation points.

Furthermore, if ψ ∈ [a, b] ⊆ (ym−1, η), then by definition ψ+ϕ < ym−1. Thus, Lemma

1 implies that lr(µ∞) 6∈ (ym−1, η) with probability 1. Similar considerations imply that

lr(µ∞) 6∈ (η, yk) with probability 1.

The following lemma shows that we can construct an information structure in which

the likelihood ratio of the posterior does not move far from the prior.

Lemma 3. For every 0 ≤ α < 1
2
< α ≤ 1 and δ > 0 there exists an information structure

F with αF = α and αF = α that satisfies the following conditions:

1. If 1
2
≤ x < y ≤ α and F ([x, y]) > 0, then |F1([x,y])

F0([x,y])
− x

1−x | ≤ δ,

2. if α ≤ x < y ≤ 1
2

and F ([x, y]) > 0, then |F1([x,y])
F0([x,y])

− y
1−y | ≤ δ,

3. if α ≤ x ≤ 1
2
≤ y ≤ α and F ([x, y]) > 0, then |F1([x,y])

F0([x,y])
− 1| ≤ δ.

The main idea is to construct an information structure in which the posterior distri-

bution decays exponentially on either side of the prior.

Proof. Let β = 1/2−α
α−α . We first define an information structure as a function of two

parameters, b ∈ (0, 1) and n ∈ N. For every n > 0 we define a sequence of 2n numbers,

as follows. For j ∈ [1, n], zj = 1/2 + j · α−1/2
n

and zj+n =
1/2−βzj

1−β . Note first that, by

definition, zn = α and z2n = α. Second, as n grows, the sequence Zn = {z1, . . . , z2n} gets

more dense in the interval [α, α], namely, maxx∈[α,α] minj∈[1,2n] |zj − x| → 0 as n → ∞.

Finally, for j ∈ [1, n] it holds that zj > 1/2, zn+j < 1/2, and βzj + (1− β)zn+j = 1/2.
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We next define an information structure F ∈ ∆(Zn) over the sequence of points. Fix

the value b > 0. For any j ∈ [1, n], let F (zj) = βbj/C and F (zn+j) = (1 − β)bj/C,

where C is a normalizing constant. Since 1
F (zj)+F (zj+n)

[F (zj)zj +F (zj+n)zn+j] = 1/2, the

distribution F has expectation 1/2, as required.

Fix some z ∈ Zn. Lemma 1 in Arieli et al. (2020) implies that the conditional

probability of z given state ω = 1 is F1(z) = 2zF (z), and its conditional probability

given state ω = 0 is F0(z) = 2(1− z)F (z).

Consider condition 1 in the statement of the lemma, and let 1
2
≤ x < y ≤ α, where

F ([x, y]) > 0. Let j be the minimal index in {1, . . . , n} such that x ≤ zj and let i be the

maximal index in {1, . . . , n} such that zi ≤ y. Note that F [x, y] = F [zj, zi], and, by the

above,

F1([zj, zi])

F0([zj, zi])
=

∑
k∈[j,i] zkb

k∑
k∈[j,i](1− zk)bk

=
zj + b

∑
k∈[j+1,i] zkb

k−j−1

(1− zj) + b
∑

k∈[j+1,i](1− zk)bk−j−1
.

The expression goes to
zj

1−zj as b goes to zero. In addition, since |zj − x| → 0 as n→∞

it holds that
zj

1−zj →
x

1−x as n → ∞. Therefore, if n is sufficiently large, then one can

choose a sufficiently small b > 0 for which |F1([x,y])
F0([x,y])

− x
1−x | ≤ δ. Condition 2 follows

similarly.

Turning to condition 3, note that if F ([x, y]) > 0 and 1
2
∈ [x, y], then either z1 or zn

(or both) lies in [x, y]. Note that both
F (zj)

F (z1)
and

F (zj)

F (zn)
approach 0 as b → 0 for every

j 6= 1, n. Therefore, F1([x,y])
F0([x,y])

approaches
F1(z1)1[x,y](z1)+F1(zn)1[x,y](zn)

F0(z1)1[x,y](z1)+F0(zn)1[x,y](zn)
as b→ 0, where 1[x,y]

is the indicator function for [x, y]. In addition, since z1 and zn approach 1
2

as n goes to

infinity, it follows from the above definition of F0 and F1 that F1(z1)
F0(z1)

and F1(zn)
F0(zn)

approach

1 as n → ∞. Together, these imply that condition 3 holds for sufficiently large n and

sufficiently small b.

The next lemma shows that we can construct an information structure in which the

public belief martingale does not change too quickly.

Lemma 4. Consider a herding game. For every ε and α < 1
2
< α there exists an

information structure F with αF = α and αF = α such that, in any equilibrium σ,

the following conditions on the public belief martingale {µt}t hold. For any time t and

1 ≤ j ≤ `, with probability 1,

1. if µt ∈ [xj−1, xj] and at = ar for r > j then |µt+1 − xr−1| ≤ ε,
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2. if µt ∈ [xj−1, xj] and at = ar for r < j then |µt+1 − xr| ≤ ε, and

3. if µt ∈ [xj−1, xj] and at = aj then |µt+1 − µt| ≤ ε.

To prove the lemma, we show that the information structure constructed in Lemma

3 satisfies the conditions of Lemma 4.

Proof. Fix δ > 0, and let F be the information structure guaranteed by Lemma 3.

Consider the first case, where µt ∈ [xj−1, xj] and at = ar for r > j. Since σ is an

equilibrium, it follows that the posterior distribution st of player t, conditional on the

realized history ht and his private signal, satisfies

µt
1− µt

· st
1− st

∈
[

xr−1
1− xr−1

,
xr

1− xr

]
.

Hence
st

1− st
∈
[

1− µt
µt

· xr−1
1− xr−1

,
1− µt
µt

· xr
1− xr

]
.

Define zr−1 ∈ [0, 1] so that zr−1

1−zr−1
= 1−µt

µt
· xr−1

1−xr−1
, and zr so that zr

1−zr = 1−µt
µt
· xr
1−xr .

We note that since µt < xr−1 we must have that 1
2
< zr−1. By Bayes’ rule it follows that

µt+1

1− µt+1

=
µt

1− µt
· F1([zr−1, zr])

F0([zr−1, zr])
.

By the assumption on F and by condition 1 in Lemma 3 we have that
∣∣∣F1([zr−1,zr])
F0([zr−1,zr])

− zr−1

1−zr−1

∣∣∣ ≤
δ. By the definition of zr we must have that µt+1

1−µt+1
→ xr−1

1−xr−1
as δ → 0. Hence, for suffi-

ciently small δ it holds that |µt+1 − xr−1| ≤ ε. The other two cases follow similarly.

We now prove Proposition 1.

Proof. Assume that the two conditions are satisfied for β and β. Let δ > 0 be the value

guaranteed by Lemma 2 and let ϕ = ym−1−η, ϕ = yk−η, α = lr−1(ϕ), and α = lr−1(ϕ).

Let F be the information structure guaranteed by Lemma 4, with αF = α, αF = α

and 2ε < δ. Note that ϕ − ϕ = yk − η + η − ym−1. By assumption, ϕ − ϕ > |Ji| for

every integer i ∈ (k,m). Therefore, Lemma 2 implies that, in every equilibrium of the

corresponding game, µ∞ ∈ [0, xk) ∪ (xm−1, 1] with probability 1.

We claim that, for a sufficiently small ε > 0 and any equilibrium σ, if the public

belief µt ≤ xm−1, then µt+1 < β. To see this, note that, by the choice of ϕ, if λ ∈ [0, 1]

satisfies lr(λ) ≤ ym−1, then

lr(λ) + ϕ = lr(λ) + yk − η ≤ ym−1 + ym − η < ym.
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This implies that, if the public belief µt ≤ ym−1, then the posterior probability pt of agent

t after receiving his private signal satisfies pt < xm. Hence, with probability 1, agent t

plays an action aj such that j ≤ m. Therefore, Lemma 4 implies that µt+1 ≤ xm−1 + ε.

Thus, for a sufficiently small ε > 0, we have µt+1 ≤ β.

Similarly, if µt ≥ xk, then µt > β. Lemma 4 further guarantees that if µt ∈
(
xm−1, β

]
and at = am, then |µt+1−µt| ≤ ε. Similarly, if µt ∈

[
β, xk

)
and at = ak, then |µt+1−µt| ≤

ε. This, together with the fact that all points λ ∈ (β, β) are continuation points, implies

that µt reaches (β − ε, β) ∪ (β, β + ε) with probability 1. Since ε < δ whenever µt

reaches (β − ε, β) ∪ (β, β + ε), at that point the martingale stops. Therefore, µ∞ ∈

(β− ε, β)∪ (β, β+ ε) with probability one for every equilibrium σ. This implies that the

pair 0 ≤ β < µ < β ≤ 1 is feasible.

We now prove Theorem 1.

Proof. We first show, using Proposition 1, that the conditions of Theorem 1 are sufficient.

We begin with the case where µ ∈ (xq−1, xq) and V ∗(µ) = v∗(µ). In this case, it is

optimal not to reveal any information. Assume next that µ = xq−1, where we can

assume that q > 1. Let ε be sufficiently small such that ϕε = xq−1 + ε < xq. Let

ϕ ∈ (xq−2, xq−1) be such that yq−1 − lr(ϕ) < yq − yq−1. By Proposition 1, the pair

(ϕ, ϕε) is feasible for all sufficiently small ε. Let Fε be the information structure that

guaranteed by Proposition 1, for which µ∞ ∈ (ϕ − ε/2, ϕ + ε/2) ∪ (ϕε − ε/2, ϕε + ε/2)

with probability 1 in any equilibrium σ. Note that Eσ[µ∞] = µ, that the distance of µ

from (ϕ − ε/2, ϕ + ε/2) is bounded away from zero, and that the distance of µ from

(ϕε−ε/2, ϕε+ε/2) approaches zero when ε→ 0. Therefore, when ε→ 0 the probability

that µ∞ lies in (ϕε− ε/2, ϕε + ε/2) approaches 1. This implies that the expected utility

of the sender lies arbitrarily close to V ∗(µ). Similar considerations can be applied when

µ = xq. This concludes the first case.

Assume next that V ∗(µ) > v∗(µ). Under this assumption there exist two priors

µ, µ ∈ [0, 1] with v∗(µ) ≥ v∗(µ) and

V ∗(µ) = qv∗(µ) + (1− q)v∗(µ),

where q ∈ [0, 1]. Assume that µ < µ < µ (the converse case where µ < µ < µ is shown
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analogously). Let µ ∈ [xk−1, xk] and µ ∈ [xm−1, xm]. Since v∗ is piecewise-constant with

v∗(µ) < V ∗(µ) we can assume that µ = xk−1 and µ = xm−1.

Let us assume for now that 0 < xk−1 = µ. By assumption, |Jk| ≤ |Jm| and |Jk| > |Ji|

for every integer i ∈ (k,m). Let ηδ = yk−1+2δ and ηδ = ym−1+δ. Let xδk−1 = lr−1(ηδ) and

xδm−1 = lr−1(ηδ). We show that the two conditions of Proposition 1 hold, and so the pair

(xδk−1, x
δ
m−1) is feasible for all sufficiently small δ > 0. The first condition follows since

yk−ηδ+ηδ−ym−1 approaches |Jk| and hence the inequality yk−ηδ+ηδ−ym−1 > |Ji| holds

for every integer i ∈ (k,m) and all sufficiently small δ > 0. The second condition readily

follows from the definition of (xδk−1, x
δ
m−1) and the fact that |Jk| ≤ |Jm|. Therefore,

(xδk−1, x
δ
m−1) is feasible for all sufficiently small δ > 0 as desired.

By assumption, for every ε > 0 there exists F such that µ∞ ∈ (xδk−1 − ε, xδk−1 + ε) ∪

(xδm−1 − ε, xδm−1 + ε) with probability 1 in every equilibrium of the herding game. Note

that (xδk−1, x
δ
m−1) approaches (xk−1, xm−1) as δ goes to 0. Therefore, since E[µ∞] = µ,

we must have that

Pσ

(
µ∞ ∈ (xδk−1 − ε, xδk−1 + ε)

)
→ 1− q

and

Pσ

(
µ∞ ∈ (xδm−1 − ε, xδm−1 + ε)

)
→ q

as δ and ε go to zero. Thus, the population herds on ak with probability approaching

1−q and am with probability approaching q. This approximates the Bayesian persuasion

solution to any desirable precision.

The case where xk−1 = 0 is shown similarly, by observing that (δ, xm−1 +δ) is feasible

for all sufficiently small δ > 0.

We next show that the converse holds. Again, we assume that µ < µ < µ. We

will show that if either |Ji| > |Jk| for some integer i ∈ (k,m) or |Jm| < |Jk|, then

V ∗(µ) > V (µ).

Assume first that |Ji| > |Jk| for some i ∈ (k,m). Note that, for an information

structure F , in order for the event µ∞ ∈ (xm−1 − ε, xm−1 + ε) to hold with positive

probability in equilibrium σ we must have that αF approaches 1
2

with ε. Alternatively,

for every ε > 0 there exists a δ(ε) > 0 such that if αF ≤ 1
2
−ε, then V (µ) ≤ V ∗(µ)−δ(ε).

Let ε0 = 1/2− lr−1(− |Ji|−|Jk|
2

). Note that since |Ji| − |Jk| > 0 it holds that ε0 > 0.

We consider two cases. If F is such that αF ≤ 1
2
− ε0, then by the above we have

that V (µ) ≤ V ∗(µ) − δ(ε0). Otherwise, αF > 1
2
− ε0 and lr(αF ) ≥ − |Ji|−|Jk|

2
. Note
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that lr(αF ) < |Jk|, for otherwise, by Lemma 1, all points in [xk−1, xk] are continuation

points, and we would have that µ∞ 6∈ [xk−1, xk] with probability 1. Thus, in this case,

the sender’s utility must be bounded away from V ∗(µ).

Since lr(αF ) ≥ − |Ji|−|Jk|
2

and lr(αF ) < |Jk| it follows from Lemma 1 that any point

λ ∈ [xi−1, xi] with lr(λ) ∈ [yi−1 + |Ji|−|Jk|
2

, yi − |Jk|] is a cascade point. Hence, in any

equilibrium, if the public belief reaches a point µt such that lr(µt) ∈ [yi−1 + |Ji|−|Jk|
2

, yi−

|Jk|], then learning stops and µ∞ = µt. Thus, whenever µt satisfies lr(µt) > yi−1+
|Ji|−|Jk|

2
,

it cannot down-cross lr−1[yi−1 + |Ji|−|Jk|
2

] and reach [xk−1, xk]. If µt ∈ [xi−1, xi], then it

holds with positive probability that µ∞ ∈ [xi−1, xi]. This demonstrates that µ∞ ∈

[xi−1, xi] with positive probability. Hence, the sender’s utility is bounded away from

V ∗(µ).

We next show that if |Jk| > |Jm|, then V (µ) < V ∗(µ). As before, for every ε > 0

there exists a δ(ε) such that if αF ≤ 1
2
− ε, then V (µ) ≤ V ∗(µ) − δ(ε). Let ε0 =

1/2 − lr−1(− |Jk|−|Jm|
4

). If F is such that αF ≤ 1
2
− ε0, then by the above we have that

V (µ) ≤ V ∗(µ) − δ(ε0). Otherwise, αF > 1
2
− ε0/2 and lr(αF ) ≥ − |Jk|−|Jm|

4
. Note that

lr(αF ) < |Jm|, for otherwise, by Lemma 1, we would have that µ∞ 6∈ [xm−1, xm] with

probability 1, and as a result the sender’s utility is bounded away from V ∗(µ). It follows

from Lemma 1 that any point λ ∈ [xk−1, xk] with lr(λ) ∈ [yk−1 + |Ji|−|Jk|
4

, yk − |Jm|] is a

cascade point.

Thus, if the public belief reaches some µt with lr(µt) ∈ [yk−1 + |Ji|−|Jk|
4

, yk − |Jm|],

then learning stops and µ∞ = µt. This implies that if µt′ ≥ yk − |Jm| for some time t′,

then µt ≥ yk− |Jm| − |Jm|−|Jk|4
at every subsequent time t ≥ t′, since lr(αF ) ≥ − |Jk|−|Jm|

4
.

Therefore, in this case the sender’s utility is also bounded away from V ∗(µ).

5 Discussion

We analyzed the classic herding model with an endogenously chosen information struc-

ture, and identified necessary and sufficient conditions under which the sender can ma-

nipulate the crowd as well as she can manipulate any individual.

In our model, we assumed that the sender’s utility is V (G, µ, σ) = EG,σ[v(a∗)] =

limδ→1(1−δ)
∑

t∈N δ
t−1EG,σv(at). For the case in which the utility function is not evalu-

ated at the limit of δ → 1, but rather at some fixed δ ∈ (0, 1), we have the following obser-
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vation: V (µ) = V ∗(µ) if and only if one of the following holds: (i) either V ∗(µ) = v∗(µ),

in which case it is optimal for the sender to not reveal any information; or (ii) V ∗(µ) is

supported on µ = 0 and µ = 1, in which case it is optimal for the sender to fully reveal

the state. The reason is simple: When δ ∈ (0, 1), the only way for the sender to obtain

utility V ∗(µ) is if she extracts this utility from every agent separately.

Although we focused on a sender with a state-independent utility function, our argu-

ments extend to the case in which this utility is state dependent, namely v : Ω×A→ R.

In this case, the indirect utility v∗ is no longer piecewise-constant, but it does remain

piecewise-linear. The necessary and sufficient conditions under which V (µ) = V ∗(µ) will

then be determined by whether the beliefs µ and µ, which support V ∗(µ), are on the left

or right endpoints of the respective intervals Jk and Jm on which they lie: If the support-

ing beliefs are on the left endpoints or on the right endpoints of both respective intervals,

then the conditions and arguments are nearly identical to the state-independent case. In

contrast, if the supporting beliefs are on different endpoints of their respective intervals,

then V (µ) = V ∗(µ) if and only if µ = 0 and µ = 1.

The intuition is the following. If µ = 0 and µ = 1, then V ∗(µ) can be attained

by choosing the information structure that fully reveals the state. On the other hand,

suppose that µ > 0, µ < 1, Jk < Jm, and that µ lies on the left endpoint of Jk and µ

on the right endpoint of Jm. In this case, in order for the public belief to get sufficiently

close to µ, there must be a sufficiently strong positive signal s. However, this signal will

prevent the public belief from getting close to µ: whenever the belief starts to approach

µ from the left, an agent who obtains signal s will take an action ar for r > m, thereby

“overshooting” past the desired belief µ. The other cases suffer from the same problem

– further details appear in the Online Appendix.

Finally, we conjecture that our result applies to more general observation structures

(as in Lobel and Sadler, 2015), but leave this to future research.
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Online Appendix

In this online appendix we consider the more general model in which the sender’s

utility is state-dependent, and so the per-period utility is v : A × Ω → R. As in the

state-independent case, for any prior µ such that V ∗(µ) > v∗(µ) the function V ∗(µ) is

supported on two priors, µ ∈ [0, 1] and µ ∈ [0, 1]. Note that the function v∗ is piece-wise

linear,9 as is its concavification V ∗.

Now, consider a prior µ ∈ [xq−1, xq]. For every λ ∈ [0, 1] and action a ∈ A let

v(λ, a) = λv(1, a) + (1− λ)v(0, a). The piece-wise linearity of V ∗ implies that one of the

following five cases must hold:

Case 1: V ∗(µ) = v∗(µ).

Case 2: (µ, V ∗(µ)) lies on the line joining (xk−1, v(xk, ak)) with (xm−1, v(xm−1, am)) for

some k ≤ q ≤ m.

Case 3: (µ, V ∗(µ)) lies on the line joining (xk, v(xk, ak)) with (xm, v(xm, am)) for some

k ≤ q ≤ m.

Case 4: (µ, V ∗(µ)) lies on the line joining (xk−1, v(xk−1, ak)) with (xm, v(xm, am)) for

some k ≤ q ≤ m.

Case 5: (µ, V ∗(µ)) lies on the line joining (xk, v(xk, ak)) with (xm−1, v(xm−1am)) for

some k ≤ q ≤ m.

The necessary and sufficient conditions under which V (µ) = V ∗(µ) are determined

by whether the beliefs µ and µ, which support V ∗(µ), are on the left or right endpoints

of the respective intervals Jk and Jm on which they lie. In particular, if the supporting

beliefs are on the left endpoints or on the right endpoints of both respective intervals,

then the conditions and arguments are nearly identical to the state-independent case. In

contrast, if the supporting beliefs are on different endpoints of their respective intervals,

then V (µ) = V ∗(µ) if and only if µ = 0 and µ = 1 (in which case full revelation

is optimal). The following theorem tightly characterizes the conditions under which

V (µ) = V ∗(µ).

9To see this, recall that in any interval of beliefs [xi−i, xi] for i ∈ {1, . . . , `}, the agents’ optimal

action is ai. For any λ ∈ [xi−i, xi], the sender’s indirect utility is thus the linear v∗(λ) = λ · v(1, ai) +

(1− λ) · v(0, ai).
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Theorem 2. V ∗(µ) = V (µ) if and only if one of the following conditions is true:

• Case 1 holds.

• Case 2 holds and |Jk| ≥ |Jm| and |Jm| ≥ |Ji| for every integer i ∈ (k,m).

• Case 3 holds and |Jm| ≥ |Jk| and |Jk| ≥ |Ji| for every integer i ∈ (k,m).

• Case 4 holds with k − 1 = 0 and m = l.

The intuition for the proof of Theorem 2 is the following. If µ = 0 and µ = 1, then

V ∗(µ) can be attained by choosing the information structure that fully reveals the state.

On the other hand, suppose that µ > 0, µ < 1, and Jk < Jm, and that µ lies on the left

endpoint of Jk and µ on the right endpoint of Jm. In this case, in order for the public

belief to get sufficiently close to µ, there must be a sufficiently strong positive signal

s. However, this signal will prevent the public belief from getting close to µ: whenever

the belief starts to approach µ from the left, an agent who obtains signal s will take an

action ar for r > m, thereby “overshooting” past the desired belief µ. The other cases,

such as µ lying on the right endpoint of Jk and µ on the left endpoint of Jm, suffer from

the same problem.

We first adapt the proof of Proposition 1 to apply also to state-dependent utility.

Proof. Assume that the two conditions are satisfied for β, β. Let δ > 0 be the value

guaranteed by Lemma 2 and let ϕ = ym−1−η, ϕ = yk−η, α = lr−1(ϕ), and α = lr−1(ϕ).

Let F be an information structure that is guaranteed in Lemma 4 such that αF = α,

αF = α and 2ε < δ. We note that ϕ−ϕ = yk−η+η−ym−1. By assumption ϕ−ϕ > |Ji|

for every integer i ∈ (k,m). Therefore, Lemma 2 implies that for every equilibrium of

the corresponding game, µ∞ ∈ [0, xk) ∪ (xm−1, 1] with probability 1.

We claim that for a sufficiently small ε > 0 it holds for any equilibrium σ that if the

public belief µt ≤ xm−1, then µt+1 < β. To see this note that by the choice of ϕ it holds

that if λ ∈ [0, 1] such that lr(λ) ≤ ym−1, then

lr(λ) + ϕ = lr(λ) + yk − η ≤ ym−1 + ym − η < ym.

Hence if the public belief µt ≤ ym−1, then the posterior probability pt of agent t after

receiving his private signal satisfies pt < xm. Hence with probability one agent t plays
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an action aj such that j ≤ m. Therefore Lemma 4 implies that µt+1 ≤ xm−1 + ε. Thus

for a sufficiently small ε > 0 we have µt+1 ≤ β.

Similarly, if µt ≥ xk, then µt ≥ β. Lemma 4 further guarantees that if µt ∈ (xm−1, β]

and at = am, then |µt+1 − µt| ≤ ε. Similarly if µt ∈ [β, xm−1) and at = ak, then

|µt+1 − µt| ≤ ε. This, together with the fact that all points λ ∈ (β, β) are continuation

points, implies that µt reaches (β − ε, β) ∪ (β, β + ε) with probability one. Since ε < δ

whenever µt reaches (β− ε, β)∪ (β, β+ ε) the martingale stops. Therefore we must have

that µ∞ ∈ (β − ε, β) ∪ (β, β + ε) for every equilibrium σ as desired. Hence the pair

0 ≤ β < µ < β ≤ 1 is feasible.

We now prove Theorem 2.

Proof. We first show, using Proposition 1, that the conditions of Theorem 1 are sufficient.

We begin with the case where µ ∈ (xq−1, xq) and V ∗(µ) = v∗(µ). In this case, it is

optimal not to reveal any information. Assume next that µ = xq−1, where we can

assume that q > 1. Let ε be sufficiently small such that ϕε = xq−1 + ε < xq. Let

ϕ ∈ (xq−2, xq−1) be such that yq−1 − lr(ϕ) < yq − yq−1. By Proposition 1, the pair

(ϕ, ϕε) is feasible for all sufficiently small ε. Let Fε be the information structure that

guaranteed by Proposition 1, for which µ∞ ∈ (ϕ − ε/2, ϕ + ε/2) ∪ (ϕε − ε/2, ϕε + ε/2)

with probability 1 in any equilibrium σ. Note that Eσ[µ∞] = µ, that the distance of µ

from (ϕ − ε/2, ϕ + ε/2) is bounded away from zero, and that the distance of µ from

(ϕε−ε/2, ϕε+ε/2) approaches zero when ε→ 0. Therefore, when ε→ 0 the probability

that µ∞ lies in (ϕε− ε/2, ϕε + ε/2) approaches 1. This implies that the expected utility

of the sender lies arbitrarily close to V ∗(µ). Similar considerations can be applied when

µ = xq. This concludes case 1.

If case 4 holds, the fully revealing information structure is optimal for the sender.

Assume that case 2 holds (case 3 is similar). We start with considering the case

where 0 < xk−1 and |Jk| > |Jm| > |Ji| for every integer i ∈ (k,m). Let ηδ = lr(xk−1) + δ

and ηδ = lr(xm−1)+δ. Let xδk−1 = lr−1(ηδ) and xδm−1 = lr−1(ηδ). We claim that the pair

(xδk−1, x
δ
m−1) is feasible for all sufficiently small δ > 0. To see this we show that the two

conditions of Proposition 1 hold. The second condition holds since yk − ηδ + ηδ − ym−1
approaches |Jk| as δ → 0. Similarly, the first condition holds for all sufficiently small
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δ > 0 since |Jm| > |Jk| and since ηδ − ym−1 = ηδ − yk−1 = δ.

Therefore, (xδk−1, x
δ
m−1) is feasible for all sufficiently small δ > 0. By assumption, for

every ε > 0 there exists F such that µ∞ ∈ (xδk−1 − ε, xδk−1 + ε) ∪ (xδm−1 − ε, xδm−1 + ε)

with probability one in every equilibrium of the herding game. Note that (xδk−1, x
δ
m−1)

approaches (xk−1, xm−1) as δ goes to 0. Therefore since E[µ∞] = µ we must have that

Pσ

(
µ∞ ∈ (xδk−1−ε, xδk−1 +ε)

)
approaches xm−1−µ

xm−1−xk−1
and Pσ

(
µ∞ ∈ (xδm−1−ε, xδm−1 +ε)

)
approaches µ−xk−1

xm−1−xk−1
as δ and ε go to zero. This means that the actions on which

the population cascades are ak with probability approaching xm−1−µ
xm−1−xk−1

and am with

probability approaching µ−xk−1

xm−1−xk−1
. This approximates the Bayesian persuasion solution

to any desired precision.

The case where xk−1 = 0 is shown similarly, by observing that (δ, xm−1 +δ) is feasible

for all sufficiently small δ > 0.

We next show that the converse hold. Namely, we start with case 2 and show that if it

holds and either |Ji| > |Jm| for some integer i ∈ (k,m) or |Jm| > |Jk|, then V ∗(µ) > V (µ)

(the converse for case 3 is shown similarly).

Assume first that |Ji| > |Jm| for some integer i ∈ (k,m). Note that for an information

structure F , in order for the event µ∞ ∈ (xm−1 − ε, xm−1 + ε) to hold with positive

probability in equilibrium σ we must have that αF approaches 1
2

with ε. Alternatively,

for every ε > 0 there exists a δ(ε) > 0 such that if αF ≤ 1
2
−ε, then V (µ) ≤ V ∗(µ)−δ(ε).

Let ε0 = 1/2− lr−1(− |Ji|−|Jm|
2

).

We consider two cases. If F is such that αF ≤ 1
2
− ε0, then by the above we have

that V (µ) ≤ V ∗(µ) − δ(ε0). Otherwise, αF > 1
2
− ε0/2 and lr(αF ) ≥ − |Ji|−|Jm|

2
. We

note that lr(αF ) ≤ |Jm| for otherwise, by Lemma 1 we must have that µ∞ 6∈ [xm−1, xm]

with probability one and the utility for the is bounded away from V ∗(µ). Hence, any

point λ ∈ [xi−1, xi] with lr(λ) ∈ [yi−1 + |Ji|−|Jm|
2

, yi − |Jm|] is a cascade point. Thus,

in any equilibrium, if the public belief reaches a point µt such that lr(µt) ∈ [yi−1 +

|Ji|−|Jm|
2

, yi−|Jm|], then learning stops and µ∞ = µt. Thus, whenever µt satisfies lr(µt) ≥

yi−1 + |Ji|−|Jm|
2

, it cannot down-cross lr−1(yi−1 + |Ji|−|Jm|
2

) and reach [xk−1, xk]. Therefore

if µt ∈ [xi−1, xi], then it holds with positive probability that µ∞ ∈ [xi−1, xi]. This

demonstrates that µ∞ ∈ [xi−1, xi] holds with positive probability. Hence the sender’s

utility is bounded away from V ∗(µ).

We next show that if |Jk| > |Jm|, then V (µ) < V ∗(µ). As before, for every ε > 0
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there exists a δ(ε) such that if αF ≤ 1
2
− ε, then V (µ) ≤ V ∗(µ) − δ(ε). Let ε0 =

1/2 − lr−1(− |Jk|−|Jm|
4

). If F is such that αF ≤ 1
2
− ε0, then by the above we have that

V (µ) ≤ V ∗(µ)− δ(ε0). Otherwise, αF >
1
2
− ε0/2 and lr(αF ) ≥ − |Jk|−|Jm|

4
. We note that

lr(αF ) ≤ |Jm| for otherwise we would have that µ∞ 6∈ [xm−1, xm] with probability one and

the sender’s utility will be bounded away from V ∗(µ). Hence, any point λ ∈ [xk−1, xk]

with lr(λ) ∈ [yk−1 + |Ji|−|Jk|
4

, yk − |Jm|] is a cascade point.

Thus, if the public belief reaches a point µt such that lr(µt) ∈ [yk−1+
|Ji|−|Jk|

4
, yk−|Jm|],

then learning stops and µ∞ = µt. This implies that if µ ≥ yk − |Jm|, then µt ≥

yk − |Jm| − |Jm|−|Jk|
4

for every t. This is true since lr(αF ) ≥ − |Jk|−|Jm|
4

. Hence, the

sender’s utility is bounded away from V ∗(µ).

Finally, we show that if Case 4 holds and either k − 1 6= 0 or m 6= l, then V (µ) 6=

V ∗(µ). We show this for the case k − 1 6= 0 (m 6= l is similar). Let F be an information

structure. If F is such that αF ≤ 1
2
− ε, then, by Lemma 1, in any equilibrium σ the

limit µ∞ 6∈ [xk−1, xk−1 + r), for sufficiently small r > 0, with probability one, and hence

V (µ) ≤ V ∗(µ)− δ(ε0). Similarly, if F is such that αF ≥ 1
2

+ ε, then by Lemma 1 it holds

for sufficiently small r > 0 that in any equilibrium σ the limit µ∞ 6∈ [xm − r, xm] with

probability one and hence V (µ) ≤ V ∗(µ) − δ(ε0). In contrast, if both αF ≥ 1
2
− ε and

αF ≤ 1
2

+ε, then for some constant r(ε) > 0 all points [xm−1+r(ε), xm−r(ε)] are cascade

point. In addition, r(ε) goes to zero as ε goes to zero. This implies that for sufficiently

small ε it holds that µ∞ < xm − r for some r > 0 and V (µ) < V ∗(µ). Hence in any case

we have that V (µ) < V ∗(µ).
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