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Abstract. The Bayesian persuasion paradigm of strategic communication models interac-
tion between a privately informed sender and an ignorant but rational receiver. The goal is
typically to design a (near-)optimal communication (or signaling) scheme for the sender. It
enables the sender to disclose information to the receiver in a way as to incentivize her to
take an action that is preferred by the sender. Finding the optimal signaling scheme is
known to be computationally difficult in general. This hardness is further exacerbated
when the message space is constrained, leading to NP-hardness of approximating the opti-
mal sender utility within any constant factor. In this paper, we show that in several natural
and prominent cases the optimization problem is tractable even when the message space is
limited. In particular, we study signaling under a symmetry or an independence assump-
tion on the distribution of utility values for the actions. For symmetric distributions, we
provide a novel characterization of the optimal signaling scheme. It results in a
polynomial-time algorithm to compute an optimal scheme for many compactly repre-
sented symmetric distributions. In the independent case, we design a constant-factor ap-
proximation algorithm, which stands in marked contrast to the hardness of approximation
in the general case.
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1. Introduction
Recommendations play a vital role in the modern information economy: online retailers make product recom-
mendations, travel websites provide advice on hotels and attractions, navigation apps suggest driving routes,
and so on. In all these examples, the designers of the recommendation systems have information that consumers
do not, and both sides benefit from communication. However, the interests of the consumers and the recommen-
ders are not always aligned. For example, whereas consumers may prefer to purchase products that constitute a
better bargain, retailers may prefer to sell products for which they obtain higher margins. A natural goal is to op-
timize the use of the retailer’s informational advantage such that recommendations result in consumer choices
that maximize its own benefit. In doing so, the retailer must account for the consumers’ interests to guarantee
that recommendations are being followed.

This optimization problem fits into the Bayesian persuasion paradigm of Kamenica and Gentzkow [34], a fun-
damental model of strategic communication proposed in economics that has recently gained significant interest
in algorithmic game theory. In this model, there are two players: a sender S with information about a so-called
state of nature, and a receiverR, who takes an action. Payoffs of the two players are determined both by the action
chosen byR and by the state of nature. A priori, the players do not know the true state of nature, but rather share
a common belief (i.e., a distribution) over the possible outcomes. However, S obtains information about the real-
ized state of nature and then sends a message (called a signal) to R. After receiving the signal, R takes an action,
and payoffs are realized.
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A distinguishing feature of the Bayesian persuasion model is that S commits to a signaling scheme before the
state of nature is realized. A signaling scheme is a (possibly randomized) function from states of nature to sig-
nals. The action for S can be cast as choosing a signaling scheme that determines the signal once the state of na-
ture is realized. This problem becomes interesting, above and beyond a standard optimization, when S and R
have misaligned preferences with different optimal actions in various states. How can S make optimal use of her
informational advantage in steeringR’s choice of action?

The problem of optimally designing recommendation systems fits neatly into this model. To illustrate, consid-
er the following simple example: S is a retailer that makes a product recommendation to a consumer, R, who
must choose one of the products. The various products yield different utilities to each of the players, and where-
as S knows which product yields which utilities, from R’s perspective, the products are randomly ordered. The
state of nature is the order in which the products appear, and the signaling scheme is the recommendation sys-
tem implemented by the retailer.

To make the example concrete, suppose there are three products: one product is good for S and bad forR, one
is bad for S but good for R, and one is bad for both. Denote these respective products by GB, BG, and BB, and
suppose they yield sender–receiver utility pairs (1, 0), (0, 1), and (0, 0) when chosen. One signaling scheme for
the sender is to always reveal which product is which. In this case, R will choose BG, and S will attain utility
zero. A better scheme for S is to reveal no information. Here, the best R can do is choose randomly, in which
case S’s utility will be 1/3. One might attempt to improve S’s utility by always recommending GB. However,
this policy is not persuasive: R’s optimal reaction is to deviate to choosing one of the other two products at ran-
dom, and again S’s utility will be zero. Nonetheless, S can do better than the no-information scheme by choosing
a scheme that recommends GB with probability 2/3 and BG with probability 1/3. A straightforward calculation
using Bayes’ rule shows that R cannot improve by deviating from this recommendation, and that following it
leads to a sender utility of 2/3. This, in fact, is the optimal signaling scheme for S.

In this paper, we study potential barriers to optimal signaling, focusing on two constraints: limited communi-
cation and limited computational resources. First, in our example above, the optimal signaling scheme needs a
signal space of size three, as each of the three products could potentially be GB or BG. But what if she was re-
stricted to sending only one of two signals? More generally, suppose there are n products, but S is restricted to
only k signals. These restrictions arise naturally, for example, when there is a limited attention span, or communi-
cation between the players is noisy and a limited number of bits can be transferred. Typically, designing optimal
signaling schemes can be based on the popular toolset developed by Kamenica and Gentzkow [34]. However,
these tools no longer apply when the number of available signals is limited.

Second, from a computational perspective, finding the optimal scheme might not be tractable. Suppose in the
example above there are n products, for large n. For the restricted case in which the utility pairs of the n products
are independent and identically distributed (i.i.d.) and given explicitly, Dughmi and Xu [19] develop a
polynomial-time algorithm that computes the optimal scheme. Note that our example above, in which the utility
pairs are known but their order is not, does not fall into this case. On the other hand, for general distributions
over the utility pairs of each product (and even ones that are independent but not identical), they show that com-
puting the optimal sender utility is #P-hard (Dughmi and Xu [19]).

Third, when computational concerns are combined with limited communication, the computational problem
is exacerbated. Dughmi et al. [21] prove a substantially stronger hardness result and show that it is NP-hard to
even approximate the optimal sender utility to within any constant factor.

1.1. Results and Contribution
We analyze optimal signaling schemes subject to communication and computation limits in the context of two
specific classes of problems that we call symmetric instances and independent instances. The first class—sym-
metric instances—consists of problems in which the a priori probability of any vector of n utility pairs is the
same as the a priori probability of any vector in which the n elements have been permuted. The optimization
problems faced by recommendation systems often consist of symmetric instances. Our example above, in which
products appear in a random order and the retailer makes a product recommendation, is a symmetric instance.
Another example is a navigation app that suggests driving routes. Standard and oft-used models of congestion
suggest that, in equilibrium, all comparable routes between two points have the same travel time (Wardrop [48]).
In practice, however, there are fluctuations, which, from the point of a driver, are random and symmetric. The
navigation app obtains information about traffic conditions and makes recommendations that take into account
the driver’s utility—such as minimizing travel time—and its own—such as learning about changes in congestion
(see, e.g., Bahar et al. [10], Kremer et al. [38]). Finally, a third set of examples captured by symmetric instances
are the i.i.d. instances highlighted by Dughmi and Xu [19], in which products’ utility pairs are drawn i.i.d. from a
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single distribution. The class is more general than these examples; in Section 2, we describe some other cases that
it captures.

In Section 3.1, we study the class of symmetric instances and develop a geometric characterization of the opti-
mal signaling scheme. In Section 3.2, we use this characterization to design an algorithm that computes optimal
schemes. Our algorithm runs in polynomial time given access to a probability oracle that computes certain proba-
bilities related to the instance. We then prove that the probability oracle can be implemented in polynomial time
in many prominent subclasses of instances studied in related literature, including but not limited to the i.i.d. and
random-order cases. Our results significantly expand the set of instances for which optimal schemes can be com-
puted efficiently beyond the i.i.d. case in Dughmi and Xu [19].

Interestingly, our results extend even to limited signal spaces. In Section 3.4, we show that for symmetric in-
stances, the optimal scheme for n actions and k < n signals is the same scheme as the one for k actions and k
signals (and a suitably adjusted distribution over utility pairs). In addition to the geometric characterization of
optimal signaling schemes with limited communication, our results also imply a polynomial-time algorithm for
finding such a scheme. Moreover, in Section 3.5, we show how a bicriteria approximation can be obtained in
polynomial time. Such a scheme is approximately optimal for the sender as well as approximately persuasive for
the receiver.

The second class of problems we study—independent instances—consists of problems in which the utility
pairs are independently but not identically distributed among the n actions. For example, the optimization prob-
lem faced by travel websites that provide advice on hotels can be viewed as an independent instance: a priori,
the value one hotel provides travelers may be independent of other hotels, but the possible value distribution of
five-star resorts is likely different from that of one-star hostels.

In Section 4, we develop polynomial-time algorithms for finding an approximately optimal signaling scheme
in a class of such instances. For general independent instances, Dughmi and Xu [19] show that finding an optimal
solution is #P-hard. We obtain a constant-factor approximation when the optimal scheme must guarantee for ev-
ery signal at least the best a priori utility of any action for the receiver. This is the case, for example, when an ac-
tion with a priori best utility for the receiver has deterministic utility for the receiver. Alternatively, this is the
case when the receiver has an outside option of a priori optimal utility. Our first algorithm in Section 4.1 is sim-
ple to state and implement and guarantees a constant-factor approximation, even in the case in which the signal
space is restricted to k < n signals. The ratio is at least 0.375 for k � 2, and it approaches (1− 1=e)2 ≈ 0:3996 for
large k. With a significantly more elaborate procedure in Section 4.2, we improve the approximation ratio for
large k to (1− 1=e− ε) ≈ 0:632, for any constant ε > 0. With the techniques used here, it is impossible to obtain a
better ratio than 1− 1=e.

These results stand in marked contrast to the hardness result of Dughmi et al. [21] for general instances, where
restrictions on the signaling space can make the optimization problem hard to approximate within any constant
factor. Our results significantly broaden the class of instances for which good approximation algorithms are
known to exist.

Finally, in Section 5, we show that restricting the number of signals from n to k hurts the optimal sender utility
by a (tight) factor of Θ(k=n) in symmetric instances and in the subclass of independent instances we discuss in
Section 4.4

1.2. Techniques
Our main results on symmetric instances in Sections 3.1 and 3.2 use a geometric characterization of the optimal
signaling scheme. For every state of nature, we interpret the utility pairs of the n actions as a set of points in the
two-dimensional plane. Given a state of nature, the expected utility of any signaling scheme can be interpreted
as a recommendation point inside the convex hull of the point set. We show that the optimal scheme has a symme-
try property and, for every state of nature, its recommendation point is located on the Pareto frontier of the point
set. Their location is such that a single common slope lies tangent to the recommendation point for every state of
nature. The symmetry property allows us to tightly capture the persuasiveness constraint as a linear inequality.
Using these insights, we turn the computation to solving a polynomial number of linear programs (LPs). The co-
efficients are probabilities derived from the Pareto frontiers of point sets of the states of nature. In this way, com-
puting the optimal signaling scheme reduces to computing certain probabilities. We show that for a variety of
symmetric distributions, such as i.i.d., random-order, prophet-secretary, or explicitly represented ones (for for-
mal definitions, see Section 2), computing these probabilities can be done in polynomial time.

Our results provide an alternative way to compute an optimal scheme for the i.i.d. case. The previous ap-
proach of Dughmi and Xu [19] uses symmetry to apply techniques from the literature on designing optimal auc-
tions with money. These techniques crucially rely on independence among bidders/actions. In contrast, our
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characterization and algorithms directly exploit the structure of the persuasion problem. We can handle correla-
tions in the utility pairs of the state of nature and obtain efficient algorithms for symmetric instances in full gen-
erality, even in the case with limited communication.

Our approximation algorithms for independent instances in Section 4 follow a two-step approach: (a) find a
good subset of k actions and (b) use each of the k signals to recommend one action from the subset. By dropping
and relaxing some constraints of the optimal signaling scheme, we devise an LP relaxation. For this relaxation,
we prove that step (a) becomes a submodular optimization problem, for which we use the standard greedy algo-
rithm. For (b), we develop an algorithm turning the optimal solution of the LP relaxation into a persuasive sig-
naling scheme. This algorithm in Section 4.1 yields an approximation ratio of roughly (1− 1=e) (for large k) in
each of these steps. Our improved analysis in Section 4.2 then shows that for large k, the greedy algorithm for
step (a) can be replaced by an FPTAS, but the factor 1− 1=e from step (b) remains. The latter factor turns out to
be tight—a further improvement must bypass the use of the LP relaxation to upper bound the optimal sender
utility.

1.3. Related Literature
Originating in Aumann and Maschler’s [6] work on repeated games with incomplete information, Bayesian per-
suasion was popularized by Kamenica and Gentzkow [34]. The many applications include financial-sector stress
testing (Goldstein and Leitner [27]), medical research (Kolotilin [36]), security (Rabinovich et al. [46], Xu et al. [50,
51]), online advertising (Arieli and Babichenko [4], Badanidiyuru et al. [9], Emek et al. [23]), and voting (Alonso
and Câmara [2]). Thorough overviews include those by Bergemann and Morris [11], Dughmi [18], Forges [24],
and Kamenica [33].

Our paper analyzes algorithmic Bayesian persuasion with limited signal spaces, most closely related to the
work of Dughmi and Xu [19] and Dughmi et al. [21]. The former give a polynomial-time algorithm to calculate
the optimal scheme for i.i.d. instances and show that the problem is #P-hard in the independently but not identi-
cally distributed case. The latter focus on bilateral trade with constrained communication but prove two general

results: (i) only a O #Signals
#States

( )
factor of utility in the unconstrained communication scenario is obtainable by the

sender, and (ii) it is NP-hard to approximate the optimal sender utility within a constant factor with a limited
number of signals. Our work complements these, as we give an optimal polynomial-time algorithm for symmet-
ric instances beyond the i.i.d. setting of Dughmi and Xu [19], and a polynomial-time constant-factor approxima-
tion for a class of independent instances.

Another related paper, by Aybas and Turkel [7], proves the existence of an optimal scheme when signals are
limited. They also show that the sender loses at most a 2=k factor of utility when the number of signals decreases
from k to k – 1. We strengthen this result for symmetric instances by showing that the cumulative loss when us-
ing k instead of n signals is at most (n− k)=n and this is tight. Put differently, we show matching lower and upper
bounds of k/n on the fraction of the sender utility that can be obtained when using k instead of n signals. Up to
small constant factors, similar bounds hold for independent instances.

More generally, extensions of algorithmic persuasion to multiple receivers have been studied by Babichenko
and Barman [8] and Arieli and Babichenko [4], who focus on private signals, as well as Dughmi and Xu [20],
who contrast private and public signals. Bhaskar et al. [12] and Rubinstein [47] study scenarios in which the re-
ceivers are players in games, proving various hardness results. Xu [49] gives efficient approximation algorithms
for some subclasses of these scenarios. Dughmi et al. [22] employ Lagrangian duality to characterize (near-)opti-
mal persuasion schemes and study a further extension that includes payments. For some of their scenarios, they
assume symmetry of the actions that is similar to our symmetric instances. Finally, to complement the multiple-
receiver setting, multiple-sender settings have been studied by Au and Kawai [5], Gentzkow and Kamenica [25,
26], Li and Norman [41], and Gradwohl et al. [28].

A different approach was taken by Hahn et al. [31, 32], who designed approximation algorithms for online ver-
sions of the single-sender, single-receiver setting. In their models, the state of nature is revealed sequentially to
S, S sends a signal in each round toR, andR then makes a binary decision. The setting of Hahn et al. [31] is rem-
iniscent of our independent instances, and that of Hahn et al. [32] is close to our symmetric instances with the
random-order assumption. Also somewhat related is the paper of Le Treust and Tomala [40], who study a re-
peated setting with limited communication through a noisy channel.

Strategic communication and the study of Bayesian persuasion have also recently gained traction in operations
research; see Candogan [14] for a detailed overview. Different applications have been considered. Examples in-
clude the study of revenue optimization through online retailers’ information policies, for example, by signaling
the availability and demand of an item (Drakopoulos et al. [17], Lingenbrink and Iyer [42]) or the purchase
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histories of other customers (Küçükgül et al. [39]). A second application is the classical queuing setting, in which
users decide whether to join an unobservable first-in, first-out queue to obtain a service for a fixed price. The ser-
vice provider can use signals to optimize the expected revenue by trying to incentivize users to join the queue
(Lingenbrink and Iyer [43]). This model was further studied in a social-services setting, where users with differ-
ent levels of need arrive and the service provider tries to maximize social welfare and not its own revenue
(Anunrojwong et al. [3]).

Third, in the realm of networks, Candogan and Drakopoulos [15] study the following setting. The provider
of a social network tries to maximize engagement of the network’s user with the content while at the same
time minimizing users’ engagement with inaccurate information on the network by sending a (private) sig-
nal about the content. A similar setting using social networks was studied in Candogan [13]. In contrast to
Candogan and Drakopoulos [15], the focus in Candogan [13] is on mechanisms using public signals, that is,
all receivers seeing the same message. A fourth, broader, setting studies platform management, including
work on market platforms that offer their services and their aggregated information to third-party sellers
(Gur et al. [30]) or rating platforms offering information on services to their users trying to engage the
“exploration” mode of their users (Papanastasiou et al. [45]). Finally, there are studies on the information
policies of public health organizations that inform their members about the severity of an upcoming health
crisis (Alizamir et al. [1]), or a government that warns its citizens and thereby elicits various responses (de
Véricourt et al. [16]).

2. Model
2.1. Signaling with Limited Messages
There are two agents, a sender, S, and a receiver, R. The receiver can take one of n actions. We denote
the set of actions by [n] � {1, : : : ,n}. Each action i ∈ [n] has a type θi from a known type set Θi. We assume
throughout that all type sets are finite. The state of nature u � (θ1, : : : ,θn) is drawn according to a com-
monly known distribution over Θ, where Θ ⊆Θ1 ×Θ2 × : : : ×Θn. We denote the probability of drawing
the state u by qu.

Action i’s type θi is associated with a value pair (�(θi),ξ(θi)), where �(θi) is the value forR and ξ(θi) is the val-
ue for S if action i is taken by R. Both agents want to maximize their respective expected utility from the action
taken. Whereas the distribution over states of nature is common knowledge, the realized state u is observed only
by S. After observing u, S sends some abstract signal σ ∈ Σ toR.

We assume that S has commitment power, that is, S commits in advance to a signaling scheme φ. It maps the
observed state of nature u to a signal σ. More formally, φ(θ,σ) denotes the probability that in state θ, the scheme
sends signal σ. φ is revealed to R before u is realized. The game we study proceeds as follows: (1) both players
know the prior distribution q; (2) S commits to a signaling scheme φ and reveals it to R; (3) the state of nature u
is realized and is revealed to S; (4) S draws signal σ according to the distribution φ(θ, ·) and sends σ to R; (5) R
chooses an action i ∈ [n], and utilities are realized.

In the standard case of Bayesian persuasion with |Σ| � k ≥ n, the sender can use signals to directly recommend
every possible action to the receiver. In this paper, we are interested in k < nwhen S might not be able to directly
recommend every single action to R. Because the case of a single signal and k � 1 is trivial, we assume k ≥ 2
throughout.

We denote the expected utility for X ∈ {S,R} by uX (φ) when S uses scheme φ and R best responds to φ by
picking, for every signal σ, an action with optimal expected utility conditioned on observing σ. Given σ, if R has
several optimal actions, we assumeR breaks ties in favor of the sender.1 If within the set of actions with best util-
ity forR there are several that have best utility for S, we assume without loss of generality (w.l.o.g.) thatR choo-
ses one of them via any fixed tie-breaking rule.

We will be interested in direct and persuasive schemes. In a direct scheme, S uses each signal to recommend a
single specific action. In a persuasive scheme, the receiver has no incentive to deviate from the recommended ac-
tion. When considering persuasiveness, a useful quantity is the best expected utility of any fixed action for R,
which we denote by �E �maxi∈[n]

∑
uqu · �(θi):

For R, direct and persuasive schemes offer a very simple choice: comply with the recommendation—which is
good in expectation—or deviate and make a guess solely based on the known prior with an expectation that is at
most as high. Hence, for a direct and persuasive scheme, a rational receiver’s obvious choice of strategy is com-
pliance with the sender’s scheme. The sender, on the other hand, is tasked with finding the optimal direct and
persuasive scheme. Hence, if S is able to find an optimal scheme, neither S nor R will deviate to a different
strategy.
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2.2. Symmetric Instances
In a symmetric instance, any two states of nature that are permutations of one another occur with the same prob-
ability. Formally, in a symmetric instance, qu � qu′ whenever u′ is any permutation of u.2 In particular, because of
symmetry, �E �

∑
uqu · �(θi) for every i ∈ [n].

Any symmetric distribution with finite type sets can be represented rather explicitly by a set of vectors, each
having n (not necessarily distinct) types, and a probability distribution over the vectors. A state of nature u is
generated by drawing one of the vectors according to the distribution and then permuting the chosen vector uni-
formly at random. We denote by d the number of vectors in the representation and call this a d-random-order sce-
nario. For d � 1, we obtain the random-order scenario from the introduction.

However, there are also interesting symmetric distributions with a much more compact representation. For
the i.i.d. scenario, the natural representation is only a type distribution for a single action from which we draw n
times to generate the state of nature. In the vector-based d-random-order representation, d could be exponential
in the number of types for a single action. Hence, we also study a more compactly represented prophet-secretary
scenario: Here, we have n (not necessarily distinct) distributions over types. The state of nature u is generated by
an independent random draw from each of the n distributions and a subsequent uniform random permutation
of the n types. The name stems from the literature on online algorithms. The prophet-secretary scenario strictly
generalizes both i.i.d. and random-order scenarios.

For simplicity, we will assume throughout that all types are indeed distinct. Note that this assumption will be
without loss of generality, because we allow distinct types to be associated with the same pair of utility values
for S andR.

2.3. Independent Instances
In an independent instance, every action i ∈ [n] has a type space Θi. For simplicity we assume that the sets Θi are
distinct, where we note that distinct types can have the same utility pairs. For each action i ∈ [n], we have a distri-
bution over types. We denote the probability of type θi ∈Θi by qi,θi . The state of nature u is generated by an inde-
pendent draw from each of the n distributions.

2.4. Direct and Persuasive
We assume the sender has only 2 ≤ k ≤ n possible signals. Every instance with k signals has an optimal direct and
persuasive scheme. For symmetric instances, we can assume these are the first k actions. The proof is a simple
revelation-principle-style argument.

Lemma 1. There exists an optimal scheme with k signals that is direct and persuasive and uses the signals to recommend k
distinct actions. In symmetric instances, there is an optimal direct and persuasive scheme in which S recommends the ac-
tions from [k].
Proof. The first statement follows from a simple revelation-principle-style argument. Consider any signaling
scheme φ. Given any signal σ, we can assume R chooses one action that maximizes the conditional expectation
of her utility. Suppose for two signals σ,σ′, R chooses the same action. Then S can simply drop σ′ and issue σ ev-
ery time it issued σ′, thereby achieving the same behavior ofR. Thus, each of the k signals can be assumed to cor-
respond to a distinct choice of action of R, which maximizes the conditional expectation of the utility of R.
Hence, we can equivalently assume that S uses the signal to issue a direct recommendation for an action such
thatRwants to follow the recommendation.

For the second statement, symmetry in the instance allows us to restrict attention to the first k actions. Consider
an optimal direct and persuasive scheme φ that recommends actions from a size k subset K ⊆ [n]. Permute the la-
bels of all actions in φ (and w.l.o.g. the tie-breaking rule of R) such that it recommends actions from [k]. Denote
the permuted φ by φ′. Because the distribution over states of nature is symmetric, it is invariant to permutation
of action labels. Hence, applying φ′ yields the same conditional expectations for the utility of R for the actions in
[k] as φ yields for K. Thus, φ′ is direct and persuasive with recommendations from [k] and uS(φ) � uS(φ′). w

3. Symmetric Instances
3.1. Characterization of Optimal Schemes
In this section, we derive a characterization of an optimal scheme in symmetric instances. Because of Lemma 1,
we consider a direct and persuasive scheme that recommends actions from the set [k]. Suppose we are given a re-
alization u of the state of nature. We interpret the action types as points in the two-dimensional plane. Type θi

corresponds to point (�(θi),ξ(θi)). We use C to denote the realized set of action types of the first k actions.
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Given any direct and persuasive scheme φ, consider the event that the state of nature gives rise to a set C of
types for the first k actions. We denote the probability of this event by qC � Pr[∪i∈[k]{θi} � C]. Conditioned on the
set C of types of the first k actions, consider the point composed of the expected utilities for R and S, that is, the
point E[uR(φ) | C],E[uS(φ) | C]( )

. Graphically, this point lies inside the convex hull of the points of C. We term
this the recommendation point for C of φ.

More generally, let us define a point collection. A point collection P contains for each set C of action types for
the first k actions a point p(C) � (pR(C),pS(C)) inside the convex hull of C. We define the utilities of S and R for P
by

uS(P) �
∑
C

qC · pS(C) and uR(P) �
∑
C

qC · pR(C):

Observe that the recommendation points of a direct and persuasive signaling scheme are a point collection,
and the utility of the collection equals the utility of the scheme, for both S and R. However, in general, a point
collection might not correspond to a persuasive signaling scheme.

Our interest lies in point collections where, for every subset C, the point lies on the corresponding Pareto fron-
tier of C. Graphically speaking, the Pareto frontier of C can be assumed to start from a type with the largest
sender utility with a horizontal line (possibly of length zero) with slope zero and end at a type with the largest re-
ceiver utility with a vertical line (again, possibly of length zero) with slope −∞. Hence, for every slope
s ∈ [0, −∞], there is a point on the Pareto frontier such that a line with slope s lies tangent to the Pareto frontier
at this point. We say that a type or a point corresponds to a slope s if a line with slope s lies tangent to the Pareto
frontier in the point. In Figure 1, we depict a set Cwhere the point p(C) corresponds to some slope s on the Pareto
frontier.

We concentrate on point collections that satisfy the following slope condition.

Definition 1. For s ≤ 0, a point collection P is s-Pareto if (1) for every subset C, p(C) is on the Pareto frontier of C
and corresponds to slope s, and (2) uR(P) ≥ �E.

Our first main result is a characterization of an optimal scheme via an s-Pareto point collection.

Theorem 1. For every symmetric instance, there is an optimal scheme whose recommendation points are a sender-optimal
s-Pareto point collection, over all s ≤ 0.

We prove the theorem using the following three lemmas. First, we show that for every persuasive scheme φ,
there is an s-Pareto point collection P with uS(P) ≥ uS(φ).
Lemma 2. For every direct and persuasive scheme φ, there is an s-Pareto point collection P with uS(P) ≥ uS(φ).
Proof. Consider an arbitrary persuasive scheme φ that uses signals corresponding to the first k actions. Let P(φ)
be the point collection of recommendation points of φ. Because φ is persuasive, the collection P(φ) satisfies the
second condition of being s-Pareto. Now we adjust P(φ) in two steps to show the lemma.

First, move every recommendation point up vertically to the Pareto frontier. This improves the sender utility
of the point collection but keeps the receiver utility the same. Hence, the resulting point collection P has all
points on the Pareto frontiers and continues to satisfy uR(P) ≥ �E and uS(P′) ≥ uS(φ). Figure 2 outlines this im-
provement for a set C of action types of the first k actions.

Figure 1. A set C of action types of the first k actions, where the point p(C) corresponds to slope s on the Pareto frontier of C
(dashed line).
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Second, suppose there are different subsets C1 ≠ C2 and there is no common slope that points p(C1) and p(C2)
both correspond to. We use the short notation p1 � (�1,ξ1) � (pR(C1),pS(C1)) and p2 � (�2,ξ2) � (pR(C2),pS(C2)),
respectively. In particular, suppose p1 corresponds to slope s1 and p2 to slope s2 < s1. As the slopes are nonposi-
tive, s2 is “steeper” than s1.

We construct a new point collection P1. For any subset C≠ C1,C2 of types of the first k actions, we keep p(C).
For sets C1 and C2, we adjust the points—we set p′1 � (�1 + δqC2 ,ξ1 + δqC2s1) and p′2 � (�2 − δqC1 ,ξ2 − δqC1s2) by
some sufficiently small δ > 0. Note that such a δ exists if p1 and p2 correspond to different slopes s1 > s2. If p1 is on
a “kink” of the Pareto frontier, it corresponds to a range of slopes [s(r)1 , s(l)1 ], where s(r)1 is the slope to the right of

the kink and s(l)1 the one to the left. Analogously, there exists a range [s(r)2 , s(l)2 ] if p2 is on a “kink.” If these intervals

do not overlap, we assume w.l.o.g. that s(l)2 < s(r)1 and set s1 � s(r)1 and s2 � s(l)2 . Intuitively, we move p1 to the “right”
for the set C1 and to the “left” for C2, thereby shifting the points along the segments on their respective Pareto
frontiers. This implies that the sender utility of the point collection grows to

uS(P1) �
∑

C≠C1,C2

qC · pS(C) + qC1 · (ξ1 + δqC2s1) + qC2 · (ξ2 − δqC1s2)

� uS(P) + qC1δqC2 · (s1 − s2)
> uS(P) ≥ uS(φ),

because 0 ≥ s1 > s2. For the receiver utility,

uR(P1) �
∑

C≠C1,C2

qC · pR(C) + qC1 · (�1 + δqC2) + qC2 · (�2 − δqC1)

� uR(P) + qC1δqC2 − qC2δqC1

� uR(P) ≥ �E:

Hence, P1 satisfies the second property of being s-Pareto, while improving the utility for the sender.
The factor δ is chosen such that p′1 and p′2 both stay on the line segments of slopes s1 and s2, respectively. Now

repeated application of this modification yields collections P2,P3, : : : until finally points p1 and p2 correspond to
at least one common slope: whenever an endpoint of a line segment is reached, if this endpoint does not corre-
spond to a slope of the other point, the process can be continued. Moreover, we can apply this modification re-
peatedly as long as there are two size k sets C1, C2 of types with points that have no common slope. Eventually,
we reach an s-Pareto point collection P with uS(P) ≥ uS(φ). Figure 3 outlines this improvement in sender
utility. w

Consider any s-Pareto point collection P. We define a direct scheme φ∗ as follows: Given a set C of types in the
first k actions and the point p(C), φ∗ recommends one of the (at most) two actions that compose the correspond-
ing line segment of p(C) on the Pareto frontier. The actions are chosen independently of their actual number with-
in the first k actions. By setting appropriate probabilities, the point p(C) corresponds to the (conditioned on the
given set C) expected utilities of φ∗ for S andR. This directly implies that uS(φ∗) � uS(P) and uR(φ∗) � uR(P).

Figure 2. A set C of action types of the first k actions and a direct and persuasive scheme φwhere the expected utility for S can
be improved bymoving the point p(C) � (E[uR(φ) | C],E[uS(φ) | C]) vertically upward to p′(C) on the Pareto frontier of C.
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Because of symmetry of the instance and a choice of action independent of its number within the first k actions,
the scheme φ∗ is symmetric. A symmetric scheme φ (see also Dughmi and Xu [19]) is direct and recommends with
each signal a distinct action in [k]. The conditional distribution over types (resulting from the prior and φ) is the
same for each recommended action. The conditional distribution over types is the same for each nonrecom-
mended action in [k] and the same for each nonrecommended action in [n] \ [k], no matter which (other) action is
recommended. Thus, a symmetric scheme gives rise to three distributions over types: a distribution Dyes for any
recommended action, a distribution Dno for any nonrecommended action in [k], and a distribution Dnever for any
nonrecommended action in [n] \ [k]. For symmetric schemes, we show that persuasiveness is equivalent to the
following simple constraint.

Lemma 3. In symmetric instances, a symmetric scheme φ is persuasive if and only if uR(φ) ≥ �E.

Proof. Clearly, if a scheme φ guarantees strictly less utility than �E toR, then R could profit by deviating to, say,
action 1 throughout. Hence, uR(φ) ≥ �E is necessary for every persuasive scheme φ.

Consider a symmetric scheme and the three resulting type distributions, Dyes, Dno, and Dnever. We denote by
�yes, �no, and �never the expectations of the utility ofR for the respective distributions. The previous lemma implies
that if φ is persuasive, then �yes ≥ �E. Now, for the reverse direction, assume that �yes ≥ �E. Clearly, because the in-
stance and scheme are symmetric, it holds that �never � �E. Again, because of symmetry, every action i ∈ [k] gets
recommended with probability 1=k. Hence, 1=k�yes + (k− 1)=k�no � �E, and �yes ≥ �E implies �no ≤ �E. It is not
profitable forR to deviate from the recommended action. Hence, if �yes ≥ �E, then φ is persuasive. w

The symmetric scheme φ∗ based on an s-Pareto point collection satisfies the constraint in Lemma 3 by defini-
tion. As such, we obtain the following result, which finishes the proof of Theorem 1.

Lemma 4. For every s-Pareto point collection P, there is a symmetric, direct, and persuasive signaling scheme φ∗ with
uS(φ∗) � uS(P).

3.2. Efficient Computation of Optimal Schemes
The Slope-Algorithm (Algorithm 1) systematically enumerates a set S containing all meaningful candidate slopes
s for an s-Pareto point collection. For every pair of types a and b, the algorithm determines the probability
(denoted by pab) that their line segment (denoted by ab) is contained in the Pareto frontier of the set C of realiza-
tions of the first k actions. For every pair with s > 0, one type Pareto dominates the other, and the pair can be dis-
carded. Similarly, if pab � 0, the pair can be discarded. The critical step in the first part of the algorithm is the
computation of pab in line 4. For now, we assume that the algorithm has oracle access to these quantities via a
probability oracle. We will discuss below how to implement the probability oracle in polynomial time.

Algorithm 1 (Slope-Algorithm)
Input: Symmetric instance with set Θ �Θ1 � : : : �Θn of action types and distribution q
1. S←∅, L←∅
2. for every pair of types a,b ∈Θ, a≠ b do

Figure 3. The Pareto frontiers of two different sets, C1 and C2, of action types of the first k actions with qC1 � qC2 and combined it-
erative improvement of the overall expected sender utility, such that the points labeled with “3” in both sides correspond to a
common slope. The points with the same label correspond to a state in the improvement procedure. Whereas the absolute differ-
ence δ in � for both C1 and C2 is the same in every step, the overall change in ξ is positive.
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3. Let s be the slope of ab and set pab ← 0
4. if s ≤ 0 then determine probability pab that ab is on the Pareto frontier of types of actions in [k]
5. if pab > 0 then S← S ∪ {s}
6. Sort the slopes of S: s1 < s2 < : : :< sℓ
7. Pick ℓ+ 1 auxiliary slopes: t1 < s1 < t2 < s2 < : : :< sℓ < tℓ+1
8. S← S ∪ {t1, : : : , tℓ+1}
9. for every slope s ∈ S do
10. for every type c ∈Θ do
11. Determine probability p(s)c that c is the unique point corresponding to s on the Pareto frontier of types of

actions in [k]
12. Solve LP (1) to determine an s-Pareto point collection
13. if LP (1) has feasible optimal solution a(s) then L←{(a(s), s)}
14. return best point collection in L with corresponding slope

At the end of the first “for” loop, the algorithm has collected in S all meaningful slopes of nonempty segments
that can appear on the Pareto frontier of the types of the first k actions. In addition to these slopes, every Pareto
frontier can be assumed to contain all slopes from [0, −∞). An optimal scheme might not necessarily correspond
to a slope of any nonempty segment attained in the first “for” loop. If it does not, it must correspond to some
slope t with si < t < si+1. Note that all slopes t ∈ (si, si+1) correspond to the same point on the Pareto frontier.
Hence, ti in line 7 can be chosen arbitrarily.

Now even if a slope s is attained by some segment ab, it might be that for some other subset of types C, slope s
corresponds to only a single point on the Pareto frontier of C. As such, the algorithm also determines in line 11
for every s ∈ S the probability that a single type c ∈Θ corresponds to s on the Pareto frontier of C. This is the criti-
cal step in the second part of the algorithm. Again, we assume that the algorithm has oracle access to these
quantities via a probability oracle. We will discuss in the next section how to implement the probability oracle in
polynomial time.

Finally, after having computed all probabilities, the algorithm solves the following LP:

Max:
∑

c, d∈Θ, c≠d
cd has slope s

pcd α(s)
cd ξc + (1 − α(s)

cd )ξd
( )

+∑
c∈Θ

p(s)c ξc,

s:t: ∑
c, d∈Θ, c≠d
cd has slope s

pcd α(s)
cd �c + (1 − α(s)

cd )�d
( )

+∑
c∈Θ

p(s)c �c ≥ �E,

α(s)
cd ∈ [0, 1] for all c, d ∈ Θ: (1)

For the LP, we assume that s is the common slope of the point collection. Clearly, for all subsets C
where a single point c corresponds to slope s, the choice is trivial. For all subsets C in which some line
segment cd with slope s is on the Pareto frontier, there is a choice to pick a point from that segment. This
choice is represented by the variable α(s)

cd ∈ [0, 1]. The LP optimizes point locations to maximize the ex-
pected utility for S (in the objective function) and to guarantee at least the average utility of �E for R. For
a given slope s, the LP might be infeasible. However, by enumerating all relevant common slopes, the al-
gorithm sees at least one feasible solution. It returns the best feasible linear programming solution along
with the slope s∗.

Note that the output of the algorithm is sufficient for S to implement an optimal persuasive scheme. The sender
looks at the set C of the types of the first k actions, computes the Pareto frontier, and looks for slope s∗. If s∗ is real-
ized by a segment ab, S recommends the action with type a with probability α(s∗)

ab and the action with type b with
probability 1− α(s∗)

ab . If it is realized through a single type c, S recommends this action with probability one.

Proposition 1. Given an efficient algorithm to compute the probability oracle, the Slope-Algorithm computes an optimal di-
rect and persuasive scheme for symmetric instances in polynomial time.

Proof. Correctness follows from the characterization in the last section and the observations above. We denote
the maximal running time of the probability oracle by To and the maximal time needed to solve LP (1) by TLP. Let
m � |Θ| denote the finite number of types. Then finding the slopes can be done in time O(m2 ·To). Sorting the
slopes needs time O(m2logm). For the second “for” loop, we iterate through O(m2) slopes. For each slope, we
need at most m calls to the probability oracle and solve one LP of polynomial size. Overall, the running time is
O(m3 ·To +m2 ·TLP +m2logm). w
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3.3. Efficient Probability Oracles
Using geometric properties of the utility pairs in prophet-secretary and d-random-order scenarios, we show how
to design polynomial-time probability oracles in these scenarios.

Theorem 2. An optimal signaling scheme with k signals can be computed in polynomial time for the prophet-secretary and
the d-random-order scenarios.

We divide the proof of Theorem 2 into two subsections for the prophet-secretary and the d-random-order
scenarios.

3.3.1. Prophet-Secretary Scenario. Consider the prophet-secretary scenario, in which we have n probability dis-
tributions over type spaces Θ1, : : : ,Θn, respectively. For simplicity, we reverse the generation process of the state
of nature u: First, permute the n distributions in uniform random order, then draw a single type from each distri-
bution independently.

We denote by qiθ the probability that type θ ∈Θi is drawn from distribution i. For the n type spaces, we assume
w.l.o.g. that they are mutually disjoint. In addition, we assume for simplicity that types are in general position,
that is, there are no more than two distinct types on any given straight line. We discuss in the end how our obser-
vations can be adapted when this assumption does not hold.

Overall, the representation size of the input is at least linear in n, maxi |Θi |, and maxi,θlog1=qiθ. For a
polynomial-time probability oracle, we have to implement two classes of queries in time polynomial in the afore-
mentioned quantities:

a. Given a pair of types a and b, return the probability pab that ab is in the Pareto frontier of the type set C of the
first k actions.

b. Given a type c and a slope s, return the probability p(s)c that c is the unique point that corresponds to slope s on
the Pareto frontier of the type set C of the first k actions.

3.3.1.1. Class a. If the two types are from the same distribution, then pab � 0. Otherwise, let ia and ib be such
that a ∈Θia and b ∈Θib . For each distribution i≠ ia, ib, we consider every type c ∈Θi. If c lies above the line
through a and b and is included in C, then c lifts the Pareto frontier above ab, and the segment vanishes from the
Pareto frontier. Thus, if c lies above the line through a and b, then c must not be in C. Otherwise, c is an allowed
type. We denote by Θi

ab the set of allowed types of distribution i, and by qiab �
∑

c∈Θi
ab
qic the probability to draw an

allowed type in distribution i. Clearly, these probabilities can be determined in time linear in the total number
of types.

Now, in order to have ab on the Pareto frontier, it must be the case that (1) distributions ia and ib are permuted
to the first k actions; (2) a and b are drawn from distributions ia and ib, respectively; and (3) for every other distri-
bution i permuted to the first k actions, we draw an allowed type. The probability for (1) is k=n · (k− 1)=(n− 1),
and the probability for (2) is qiaa · qibb . To compute the probability of (3), we consider every subset A ⊆ {1, : : : ,n} \
{ia, ib} of |A| � k− 2 distributions and compute the probability that from every distribution of A we draw an al-
lowed type. Overall,

pab � k
n
· k− 1
n− 1

· qiaa · qibb ·
1

n− 2
k− 2

( ) · ∑
A⊆{1, : : : ,n}\ {ia, ib}

|A|� k− 2

∏
i∈A

qiab:

To compute the last term, we need to compute the sum of products of all (k− 2)-size subsets of n – 2 numbers.
This can done in time O(nk) using a dynamic program.

3.3.1.2. Class b. Let ic be such that c ∈Θic . For each distribution i≠ ic, we again consider every type d ∈Θi. Point
type c shall be the unique point corresponding to slope s on the Pareto frontier, so there must not be any type on
or above the line going through c with slope s. Hence, all types that remain strictly below this line are allowed
types. We denote by Θi

c the set of allowed types of distribution i, and by qic �∑
d∈Θi

c
qid the probability to draw an

allowed type in distribution i. These probabilities can be determined in time linear in the total number of types.
For c to be the unique point that corresponds to s on the Pareto frontier, it must be the case that (1) distribution

ic is permuted to the first k actions, (2) c is drawn from distribution ic, and (3) for every other distribution i per-
muted to the first k actions, we draw an allowed type. The probability for (1) is k=n, and the probability for (2) is
qicc . To compute the probability of (3), we consider every subset A ⊆ {1, : : : ,n} \ {ic} of |A| � k− 1 distributions and
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compute the probability that from every distribution of Awe draw an allowed type. Overall,

p(s)c � k
n
· qicc ·

1
n− 1
k− 1

( ) · ∑
A⊆{1, : : : ,n}, {ic}

|A| � k− 1

∏
i∈A

qic:

Again, the last term can be computed by a dynamic program in time O(nk).

3.3.1.3. On General Position. When types are not in general position, that is, there are three or more types on a
straight line, the events of them forming a line segment on the Pareto frontier are not disjoint. Hence, the proba-
bilities to set up the LP have to be computed in a slightly different manner.

We ensure that a segment is not counted multiple times by considering, for any given slope, only the longest
possible line segment in the Pareto frontier. Hence, the following modification has to be made for queries of class
a when determining the set of allowed types Θi

ab: All types of Θi that are on the segment ab are allowed because
this does not prohibit ab from being the longest possible line segment. All types of Θi that are on the straight line
going through a and b but not on ab must not be allowed. With this modification to calculate the probabilities for
pab, general position of types is no longer required.

The main insight in this section is summarized in the following proposition.

Proposition 2. For the prophet-secretary scenario, we can implement a probability oracle for the Slope-Algorithm in poly-
nomial time.

3.3.2. d-Random-Order Scenario. For d-random-order instances, we have d type vectors u1, : : : ,ud and a distribu-
tion over these vectors. We denote by qu i the probability of u i. Without loss of generality, we assume that all dn
types in the d vectors are distinct. To generate a state of nature, we draw vector u i with probability qu i and then
permute the vector uniformly at random. The representation size of the input is linear in dn and maxilog1=qu i .
For a polynomial-time probability oracle, we again have to implement two classes of queries discussed in the
previous section. The running time will be polynomial in the aforementioned quantities. For simplicity, we again
assume types are points in general position.

3.3.2.1. Class a. If the two types a and b come from different vectors u j and u j′, then pab � 0. Otherwise, suppose
a and b are from u j. Consider each type c from u j with c≠ a,b. If c lies above the line through a and b and is in-
cluded in C, then c lifts the Pareto frontier above ab, and the segment vanishes from the Pareto frontier. Thus, if c
lies above the line through a and b, then c must not be in C. Otherwise, c is an allowed type. We denote by Aj

ab
the set of allowed types from vector u j. Clearly, Aj

ab can be computed in time linear in n.
Now, in order to have ab on the Pareto frontier, it must be the case that (1) u j is drawn from the distribution,

(2) a and b are permuted to the first k actions, and (3) every other type from u j permuted to the first k actions is

an allowed type. The probabilities for these events are (1) qu j , (2) k
n · k−1n−1, and (3) |Aj

ab|
k− 2

( )/
n− 2
k− 2

( )
, where we assume

that |Aj
ab |

k− 2

( )
� 0 if |Aj

ab | < k− 2. Overall,

pab � qu j · k
n
· k− 1
n− 1

· 1
n− 2
k− 2

( ) · |Aj
ab |

k− 2

( )
:

Clearly, this expression can be computed in polynomial time for every pair of types a, b.

3.3.2.2. Class b. Let c be a type from vector u j. Consider each type d from u j with d≠ c. Type c shall be the
unique point corresponding to slope s on the Pareto frontier, so d must not be on or above the line going through
c with slope s. If d remains strictly below this line, it is an allowed type. We denote by Aj

c the set of allowed types
from u j. Clearly, Aj

c can be computed in time linear in n.
For c to be the unique point that corresponds to s on the Pareto frontier, it must be the case that (1) u j is drawn

from the distribution, (2) c is permuted to the first k actions, and (3) every other type from u j permuted to the first

k actions is an allowed type. The probabilities for these events are (1) qu j , (2) k
n, and (3) |Aj

c |
k− 1

( )/
n− 1
k− 1

( )
, where we
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assume that |Aj
ab |

k− 1

( )
� 0 if |Aj

ab | < k− 1. Overall,

p(s)c � qu j · k
n
· 1
n− 1
k− 1

( ) · |Aj
c |

k− 1

( )
:

Again, the expression can be computed in polynomial time for every type c.
The adjustments to remove the assumption of general position are the same as for the prophet-secretary sce-

nario in the previous section. The main insight in this section is summarized in the following proposition.

Proposition 3. For the d-random-order scenario, we can implement a probability oracle for the Slope-Algorithm in polynomial time.

3.4. Truncated Instances
For a symmetric instance with k signals and n actions, consider a truncation operation: Remove actions k+ 1, : : : ,n
from consideration, and restrict every state of nature u to its first k entries. This yields the truncated instance with
k signals and k actions. Suppose we apply the characterization from Theorem 1 and the Slope-Algorithm to com-
pute an optimal scheme in the original instance and the truncated instance. Indeed, it is a straightforward conse-
quence of symmetry that the resulting scheme is the same.

Theorem 3. For symmetric instances with k signals and n actions, there is an optimal scheme that is an optimal scheme for
the truncated instance with k signals and k actions, and vice versa.

We show that one can apply algorithms to the truncated instance and obtain similar results for the scenario
with k < n actions. By truncating the instance, we return to the standard scenario of Bayesian persuasion with n
� k actions and signals.

In particular, for the i.i.d. scenario, truncation yields an instance where we draw from the same underlying dis-
tribution simply for k instead of n actions. Hence, an optimal scheme with n i.i.d. actions and k signals is an
optimal scheme for k i.i.d. actions and k signals. Instead of using the Slope-Algorithm, it can also be obtained by
solving a single LP of polynomial size (Dughmi and Xu [19]).

3.5. Bicriteria Approximation
In the following section, we show how a bicriteria approximation for symmetric instances can be obtained using
a result from Dughmi and Xu [19] and the result from the previous Section 3.4.

Having black-box access to the prior over states of nature, we obtain a bicriteria approximation by using a
Monte Carlo sampling approach. In the following, we assume that all utility values are in �(θi),ξ(θi) ∈ [−1, 1].
We assume S has black-box oracle access to the prior, that is, she can draw states of nature as samples from the
distribution.

Let φ∗ be an optimal direct and persuasive scheme. Given any parameter ε > 0, a direct scheme φ is ε-persuasive
if E[�(θi) | σ � i] ≥ E[�(θj) | σ � i] − ε for all actions j ∈ [n]. A direct scheme is ε-optimal if uS(φ) ≥ uS(φ∗) − ε, where
for uS(φ) we assume thatR follows the recommendation. An ε-persuasive and ε-optimal scheme gives both players
a guarantee that their expected utility is at most an (additive) ε away from a utility benchmark. For R, the bench-
mark is the utility of the best action given φ, and for S, it is the utility obtained by an optimal persuasive scheme.

The main result of this section is that the bicriteria FPTAS from Dughmi and Xu [19] can be applied to the trun-
cated instance.

Corollary 1. In symmetric instances with k ≤ n signals, utility values in [−1, 1], and black-box oracle access to the
distribution over states of nature, an ε-persuasive and ε-optimal scheme can be computed in time polynomial in n and 1=ε,
for every ε > 0.

Proof. We apply the bicriteria FPTAS from Dughmi and Xu [19] to the truncated instance, which implies the re-
sult for the truncated instance. We now argue that the guarantees of ε-optimal and ε-persuasive also apply in the
original instance. Because we observed above that there is a scheme that is optimal in both the truncated and
original instances, ε-optimality is immediate. It remains to show ε-persuasiveness.

In addition to the given state of nature, the scheme draws a polynomial number of independent samples from
the black-box oracle. It then computes the optimal direct and ε-persuasive scheme for the uniform distribution
over the sample set. This is done by solving an LP of polynomial size (see Dughmi et al. [21, section 5.1]). In the
solution of the LP, we assume that all ties are broken uniformly at random. Then, if we permute all states of na-
ture in the sample in the same way, the resulting scheme also permutes the signal distributions in the same way.
Because of symmetry in the instance, every permutation is equally likely. As a consequence, the resulting scheme
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is symmetric. We denote by �yes, �no, and �never the expected utility forR for the distributions of recommended ac-
tion, nonrecommended action in [k], and nonrecommended action in [n] \ [k], respectively. Note that �never � �E.
Because of symmetry, as in Lemma 3, we have 1=k�yes + (k− 1)=k�no � �E, and because of ε-persuasiveness in the
truncated instance, we know �yes ≥ �no − ε. Combining the two inequalities leads to �yes ≥ (k�E − �yes)=(k− 1) − ε,
which implies �yes ≥ �never − (k− 1)=k · ε. w

4. Independent Instances
In this section, we move away from symmetric instances and concentrate on the case of independent actions. For
such instances, computing the expected utility for S is #P-hard, even in the standard case with n actions and n
signals (Dughmi and Xu [19]). We discuss how to obtain a persuasive scheme for k signals that guarantees a
constant-factor approximation to the optimal sender utility for k signals.

We first identify an action with the highest a priori utility �E for R. If there are multiple such actions, pick one
that maximizes the expected utility for S. If there are several of these, pick an arbitrary one from these. We re-
number the actions such that this is action n. Our signaling schemes use k signals to recommend a set S ∪ {n} of k
actions. The signal for action n plays the role of a dummy signal (cf. Dughmi et al. [19]).

Our algorithm applies in independent instances, in which there is an optimal scheme φ∗ such that R obtains
a conditional expectation of at least �E for every signal. We term this condition �E-optimality. For example,
�E-optimality is fulfilled when there is an action that has deterministic utility of �E for R (but possibly ran-
domized utility for S). Then R can always secure a value of �E by choosing this action. As such, to be persua-
sive, φ∗ must guarantee at least a conditional expected utility of �E for every signal.

Our signaling schemes consist of two steps: (a) choose a suitable set S of k – 1 actions, and (b) given any
set S ∪ {n} of k actions, compute a signaling scheme that recommends one of these actions. We give two
variants that follow this approach. First, in Section 4.1, we consider the independent scheme φIS based on a
greedy algorithm for step (a). The approximation guarantee is given in the subsequent theorem. It is 3=8 �
0:375 for k � 2. For k→∞, it approaches (1− 1=e)2 ≈ 0:3996.

Theorem 4. The independent scheme φIS is a direct and persuasive scheme for �E-optimal independent instances with k sig-
nals. It can be implemented in time polynomial in the input size. For every k ≥ 2,

uS(φIS) ≥ 1− 1− 1
k

( )k( )
· 1− 1− 1

k

( )k−1( )
· uS(φ∗):

Subsequently, in Section 4.2, we describe an improved procedure to compute a good set S in step (a). This im-
proves the approximation ratio considerably for larger values of k. The ratio is at least 0:375− ε for k � 2. For
k→∞, it is at least 1− 1=e− ε.

Theorem 5. The improved independent scheme φIIS is a direct and persuasive scheme for �E-optimal independent instances
with k signals. It can be implemented in time polynomial in the input size. For every k ≥ 2 and every constant ε > 0,

uS(φIIS) ≥ 1− 1− 1
k

( )k( )
· (1− ε) · 1− 1

k

( )
· uS(φ∗):

We observe below that for large values of k, this is essentially a tight guarantee for our approach. A further im-
provement of the approximation ratio requires significantly different techniques.

4.1. Constant-Factor Approximation
In this section, we describe the independent scheme and prove Theorem 4. For each type set Θi, we, w.l.o.g., in-
clude a sufficient number of dummy types θi with qi,θi � 0 and assume that |Θi | � |Θj | �m, for all i, j ∈ [n]. We use
[m] to enumerate the possible types of each action i. Now for any subset S ⊆ [n− 1] of the first n – 1 actions, con-
sider a set function f : 2[n−1] → R defined by

f (S) �max

{ ∑
i∈S∪{n}

gi(zi)
∣∣∣∣∣ ∑
i∈S∪{n}

zi ≤ 1 and zi ≥ 0∀ i ∈ S ∪ {n}
}
, (2)
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where
gi(z) �Max:

∑m
j�1

xijξij,

s:t:
∑m
j�1

xij ≤ z,

∑m
j�1

xij�ij ≥ �E ·
∑m
j�1

xij,

xij ∈ [0,qij] ∀j ∈ [m]: (3)

For an intuition, we interpret zi as an overall probability of a signal for action i. Then gi(zi) maximizes the ex-
pected utility for the sender conditioned on a probability mass of zi on action i. In LP (3), xij describes the portion
of the probability mass on type j of action i. The first constraint of LP (3) limits the total mass of action i to at
most z. The second constraint ensures that the conditional expected utility of x for R is at least �E. Finally, the
last constraint states that the probability of a signal for type j is at most the probability that type j is realized.

Consider any direct and persuasive scheme φS∪{n} that uses |S| + 1 signals to recommend the actions S ∪ {n}.
Suppose xij is the ex post probability to recommend action i with type j in φS∪{n}. Clearly, the constraints in (2)
and (3) do not fully capture the constraints on xij. However, all constraints are necessary. In particular, setting xij
to the ex post probability of recommending action i with type j in the optimal scheme φ∗

S∪{n} gives a feasible solu-
tion for every LP (3), and zi �∑m

j�1xij is feasible for (2) (cf. Hahn et al. [31, lemma 1]). Hence, for any given subset
S ∪ {n} of recommended actions, f(S) is an upper bound on the optimal sender utility, that is, f (S) ≥ uS(φ∗

S∪{n}).
Now, consider the independent scheme φIS. It consists of two steps: (a) choose a suitable set S of k – 1 actions,

and (b) given any set S ∪ {n} of k actions, compute a signaling scheme that recommends one of these actions.
Step (a) is done in ActionsGreedy (Algorithm 2), and step (b) in ComputeSignal (Algorithm 3).

Algorithm 2 (ActionsGreedy)
Input: Type sets Θ1, : : : ,Θn and distributions q1, : : : ,qn, s.t.

∑
jqn,j�nj � �E and

∑
jqn,jξnj �maxi∈[n] :∑jqi,j�ij��E∑

jqi,jξij, parameter 2 ≤ k ≤ n
1. S←∅
2. for ℓ � 1, : : : ,k− 1 do: Let i be an actionmaximizing f (S ∪ {i}) − f (S) and set S← S ∪ {i}
3. return S

Algorithm 3 (ComputeSignal)
Input: Type sets Θ1, : : : ,Θn and distributions q1, : : : ,qn, s.t.

∑
jqn,j�nj � �E and

∑
jqn,jξnj �maxi∈[n] :∑jqi,j�ij��E∑

jqi,jξij, parameter 2 ≤ k ≤ n, set S ⊆ [n− 1]with |S| � k− 1
1. For i ∈ S ∪ {n}, let z∗i and x∗i be the values of the optimal solution in f(S)

2. Order actions in S ∪ {n} such that
gi1 (z∗i1 )
z∗i1

≥ : : : ≥ gik (z∗ik )
z∗ik

, where we assume 0=0 � 0
3. for ℓ � 1, : : : ,k do
4. Observe type j of action iℓ and flip independent coin with probability x∗iℓ ,j=qiℓ ,j for heads
5. if coin comes up heads then return signal for action iℓ
6. return signal for action n

We start our analysis by bounding the approximation of φIS in terms of optimal sender utility. Toward this
end, we observe that ActionsGreedy implements the greedy algorithm for submodular maximization.

Lemma 5. The function f is nonnegative, nondecreasing, and submodular.

We illustrate gi in Figure 4 above. For all i, gi is piecewise linear and concave. This means that increasing zi for
some i yields diminishing returns, and we can maximize f(S) by using a water-filling approach, that is, for all i ∈
S increasing zi for all gi with the same slope at zi such that we can maintain a common slope for all i ∈ S.

To show submodularity of f, we use an auxiliary function f ′ to bound the marginal increase in f to show that
f (T ∪ { j}) − f (T) ≤ f (S ∪ { j}) − f (S) for j ∉ T ⊇ S.

Proof. The function f is clearly nonnegative and nondecreasing, becausece every gj is nonnegative, piecewise lin-
ear, and concave. Hence, f (S ∪ { j}) can only improve over f(S). To see that f is submodular, note that f optimally
distributes a unit of mass to a set of monotone, concave functions. Observe that the optimal assignment of z∗i in
f(S) for all i ∈ S can be reached through a water-filling approach. Keeping the same slope for all gi (where we as-
sume w.l.o.g. that a breakpoint between linear segments in gi represents all intermediate slopes), z∗i , i ∈ S are
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increased until
∑

i∈Sz∗i � 1. Consider the common slope of the functions gi for i ∈ S resulting from the optimal
water-filling assignment of z∗i in f(S). When going from S to S ∪ { j}, the slope can only decrease. As a conse-
quence, when adding more elements to S, the z∗i are nonincreasing.

Consider S ⊆ T and j ∉ T. Let zSj be the optimal choice in f (S ∪ { j}) and zTj be the one in f (T ∪ { j}). Note that
zSj ≥ zTj . Now assume that for f ′(S ∪ { j}), we allow assigning only at most zTj to gj. Then f ′(S ∪ { j}) ≤ f (S ∪ { j}), be-
cause in the former, a mass of zSj − zTj yields a smaller growth in value because of assignment to i≠ j with a smaller
slope. When shifting from f(S) to f ′(S ∪ { j}) and from f(T) to f (T ∪ { j}), in both cases the increase at j is gj(z′j ), and a

mass of zTj is removed from the remaining functions. This has a stronger effect in S, because the removal occurs at a
higher slope. Overall, f (T ∪ { j}) − f (T) ≤ f ′(S ∪ { j}) − f (S) ≤ f (S ∪ { j}) − f (S). w

By Lemma 1, we can assume that the optimal scheme φ∗ directly recommends a set K of k actions.

Lemma 6. For every k ≥ 2, ActionsGreedy computes a subset S of k – 1 actions such that

f (S) ≥ 1− 1− 1
k

( )k−1( )
· uS(φ∗):

Proof. ActionsGreedy is a standard greedy algorithm for submodular maximization. Note that

uS(φ∗) ≤ uS(φ∗
K∪{n}) ≤ f (K) ≤ f (S∗k),

where S∗k ∈ arg max{ f (S) | S ⊆ [n− 1], |S| � k}. The action n is a priori receiver optimal, and in our scheme below,
it will play the role of an outside option, a baseline or dummy signal (cf. Dughmi et al. [21], Hahn et al. [31]).
However, it is not necessarily part of the optimal subset K of signals. As such, we overestimate the optimal value
by f (S∗k), the best set of k + 1 recommended actions, one of which must be action n.

A simple generalization of the standard analysis in Nemhauser et al. [44] (see, e.g., Krause and Golovin [37,
theorem 1.5]) shows that for this case, the greedy solution S guarantees f (S) ≥ (1− (1− 1=k)k−1) · f (S∗k), and the
lemma follows. w

Now consider the second step of φIS, that is, the computation of a signal using ComputeSignal.

Lemma 7. For every k ≥ 2, let S ∪ {n} be any set of k actions. Given the set S ∪ {n} of actions, ComputeSignal computes a
signaling scheme φ such that

uS(φ) ≥ 1− 1− 1
k

( )k( )
· f (S):

The algorithm decides for each action i ∈ S ∪ {n} independently whether to recommend this action, stopping
the process after the first recommendation. Hence, the probability that an action is recommended consists of two
parts, namely, no other action having been recommended beforehand and the coin flip for this action coming up
as “recommend.” Using the generalized mediant inequality, we can then bound the expected sender utility. The
formal proof follows below.

Proof. Given the chosen set S of actions, we consider these actions one by one in nonincreasing order of gi(z∗i )=z∗i .
ComputeSignal flips an independent coin for each action whether to recommend it. We perform several

Figure 4. Schematic of a function gi (see (3)) used for submodular function f in (2).
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bounding steps to provide a lower bound on uS(φ). First, we assume that the final “backup signal” for action n
in the last line, line 6, has value zero for S. We use pℓ � ∏ℓ−1

ℓ′�1(1− z∗ℓ′ ) to denote the probability to arrive in itera-
tion ℓ > 1 in the “for” loop. Conditioned on arriving in iteration ℓ, the combined probability of action iℓ having
state j and issuing a recommendation is qiℓ ,j · (x∗iℓ ,j=qiℓ ,j) � x∗iℓ ,j. Thus, conditioned on arriving in iteration ℓ, the ex-
pected value for S from this iteration is ∑m

j�1x
∗
iℓξiℓ ,j � giℓ (z∗iℓ ). Overall,

uS(φ)
f (S) ≥

∑k
ℓ�1giℓ (z∗iℓ ) · pℓ∑k

ℓ�1giℓ (z∗iℓ )
�

∑k
ℓ�1uiℓ · z∗iℓ · pℓ∑k

ℓ�1uiℓ · z∗iℓ
, (4)

where we use the notation uiℓ � giℓ (z∗iℓ )=z∗iℓ . Note that if z � 0, then giℓ (z) � 0. More generally, if there is an action iℓ ∈
S with giℓ (z∗iℓ ) � 0, then we can drop it from consideration and consider the ratio with the k – 1 remaining actions.
Hence, we can assume that uiℓ > 0, for all 1 ≤ ℓ ≤ k. By scaling the terms, we obtain uik � 1 without changing the
ratio. Note that the last ratio in (4) is a weighted mediant, where the terms uiℓ , 1 ≤ ℓ ≤ k, act as weights for the ratios

z∗i1
z∗i1

>
z∗i2p1
z∗i2

> : : :>
z∗ikpk
z∗ik

:

Repeated application of the generalized mediant inequality shows that when ui1 ≥ : : :≥ uik � 1, the ratio is mini-
mized for ui1 � : : : � uik � 1, that is,

uS(φ)
f (S) ≥

∑k
ℓ�1uiℓ · z∗iℓ · pℓ∑k

ℓ�1 · z∗iℓ
≥

∑k
ℓ�1z

∗
iℓ · pℓ∑k

ℓ�1z
∗
iℓ

�∑k
ℓ�1

z∗iℓ · pℓ

� 1− ∑k−1
i�1

z∗iℓ

( )∏k−1
i�1

(1− z∗iℓ )

≥ 1− k− 1
k

1− 1
k

( )k−1
� 1− 1− 1

k

( )k
:

For the third line, observe that the last function in the second line is symmetric and convex in every variable z∗iℓ .
As such, it has a global minimum at z∗i1 � : : : � z∗ik � 1=k. w

Combining the previous lemmas allows us to bound the approximation ratio. We proceed to show persuasive-
ness of the scheme.

Lemma 8. ComputeSignal returns a direct and persuasive signaling scheme for independent instances with k signals.

To prove persuasiveness of the scheme, we show that for every recommended action, the expected value forR
is at least �E and further argue why this is sufficient for persuasiveness.

Proof. Note that ComputeSignal solves LP (2) to optimality. Hence, because of the first constraint of LP (3), we
have

∑m
j�1 xij ≤ zi for every i ∈ S ∪ {n}. We first argue that we can, w.l.o.g., assume that this constraint holds with

equality.
Every LP (3) is a parametric linear program. Increasing scalar z increases the right-hand side of the first pack-

ing constraint. It is easy to see that gi(0) � 0. Standard sensitivity analysis for parametric linear programs implies
that gi(z) is nondecreasing, piecewise linear, and concave. Hence, an optimal assignment z∗ in (2) results from a
water-filling approach, where we raise the entries z∗i until they sum up to one, while keeping a common slope for
all functions gi for i ∈ S ∪ {n}. For every i ∈ [n− 1], there exists at most one breakpoint ẑi ∈ [0, 1] such that the
slope of gi(z) is zero for all ẑi ≤ z ≤ 1. If no such breakpoint exists, we can set ẑi � 1. Without loss of generality, we
assume 0 ≤ z∗i ≤ ẑi and z∗n ≥ 0 such that

∑n
i�1 z∗i � 1. Observe that for every zn ∈ [0, 1], we can assume the first con-

straint in LP (3) holds with tightness without violating the second constraint with �E. As a consequence, we can
assume w.l.o.g. for every i ∈ [n] that in the optimal solution z∗ of (2), the first constraint of every LP (3) is satisfied
with equality

∑m
j�1 x∗ij � z∗i .

Using this insight, we prove persuasiveness. In particular, for every choice of the set S of actions with S ⊆
[n− 1]with |S| � k− 1, we show that ComputeSignal computes a direct and persuasive signal.
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For each action i ∈ S ∪ {n}, ComputeSignal observes the type realization and uses the optimal solution x∗ for
LP (3) to flip an independent coin that yields the recommendation for action i. First, condition on the event that
the scheme returns the signal for action iℓ ∈ S in the last “for” loop. We again use pℓ �∏ℓ−1

ℓ′�1(1− z∗iℓ′ ) to denote
the probability that the scheme arrives in iteration ℓ. Because of independent coin flips in the “for” loop, the
probability that the signal is sent in iteration ℓ is

∑m
j�1 qiℓ ,j · x∗iℓ ,j=qiℓ ,j � z∗iℓ , where we assume the equality z∗i �∑m

j�1 x∗ij
as observed above. A signal for action iℓ ≠ n yields a conditional expected utility forR of

1
pℓ · z∗iℓ

· pℓ ·
∑m
j�1

qiℓ ,j · (x∗iℓ ,j=qiℓ ,j) · �iℓ ,j

� 1
z∗iℓ

∑m
j�1

x∗iℓ ,j�iℓ ,j ≥ �E,

where the inequality follows from the second constraint in (3).
Now suppose ComputeSignal signals action n. First, suppose the signal results from the last line of the scheme.

Then all coins in other iterations ℓ′ ≠ ℓ with iℓ′ ≠ n have not come up heads, which has probability
p−ℓ �∏

ℓ′≠ℓ(1− z∗iℓ′ ). In addition, the signal in iteration ℓ with iℓ � n must not be sent. The receiver obtains an ex-
pected utility of

p−ℓ ·
∑m
j�1

qn,j · 1− x∗nj=qn,j
( )

· �nj � p−ℓ · �E −
∑m
j�1

x∗nj�nj

( )
:

Second, assume the signal results from iteration ℓ of the “for” loop; then the expected utility is

pℓ ·
∑m
j�1

qiℓ ,j · (x∗iℓ ,j=qiℓ ,j) · �iℓ ,j � pℓ
∑m
j�1

x∗iℓ ,j�iℓ ,j:

A signal for action n yields a conditional expected utility forR of

pℓ
∑m

j�1x
∗
nj�nj + p−ℓ �E −∑m

j�1x
∗
nj�nj

( )
pℓ · z∗n + p−ℓ · (1− z∗n)

� p−ℓ · �E + (pℓ − p−ℓ)∑m
j�1x

∗
nj�nj

p−ℓ + (pℓ − p−ℓ) · z∗n
≥ �E · (p−ℓ + (pℓ − p−ℓ) · z∗n)

p−ℓ + (pℓ − p−ℓ) · z∗n
� �E,

where the inequality follows from the equality z∗i �∑m
j�1 x∗ij and the second constraint in (3).

Hence, for every recommended action, the expected value for R is at least �E. Thus, deviating to any action
i ∉ S ∪ {n} is not profitable for R, because the type of action i is independent of the signal, and every action a pri-
ori has expected value at most �E forR.

We condition on the case that ComputeSignal sends a signal for action iℓ ≠ n in the “for” loop. The expected
value of action iℓ′ with ℓ′ > ℓ is at most �E, because the type of action iℓ′ has not been observed. For ℓ′ < ℓ, the
scheme decided not to send a signal using an independent coin flip in iteration ℓ′. The overall value of action iℓ′
forR is most �E, the value of a signal is at least �E, so a nonsignal for action iℓ′ has value at most �E forR. Similar
arguments show that conditioned on a signal for action n, every other action has expected value at most �E. This
proves that the resulting scheme is persuasive. w

In terms of running time, GreedyActions solves (2) an O(nk) number of times. ComputeSignal solves (2) only
once, and then computes at most k – 1 independent coin flips. Clearly, both algorithms can be implemented to
run in time polynomial in the representation of the input. This concludes the proof of Theorem 4.

4.2. Improved Approximation and Tightness
In this section, we improve the approximation ratio of the scheme from the previous section. It is easy to see that
Lemma 7 is tight—there are cases3 in which the sender utility of any persuasive scheme for action set S ∪ {n} can
indeed recover at most a fraction of 1− (1− 1=k)k of f(S).

Instead, we replace the standard greedy algorithm for submodular maximization by a more elaborate proce-
dure to carefully choose a subset of actions. In this section, we describe an FPTAS to compute, for every given
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constant ε > 0, a set S ⊆ [n− 1] of k – 1 actions such that f (S) ≥ (1− ε) · f (S∗) for the set S∗ ⊆ [n− 1] of k – 1 actions
that maximizes f.

Our approach in the algorithm described below is to use a discretized version f̂ of function f. In f̂ (S), we re-
strict the possible values for zi, for every action i ∈ [n], to zi ∈ {0,τ, 2τ, 3τ, : : : , 1}, where τ � 1=�k=δ�. This restriction
decreases the optimal value by at most a factor of δ, that is, f̂ (S) ≥ (1− δ)f (S) for every subset S ⊆ [n− 1]. We then
construct a knapsack-style FPTAS to find, for any constant δ > 0, a subset S such that f̂ (S) ≥ (1− δ)f̂ (S∗) ≥
(1− δ)2f (S∗) in polynomial time, where S∗ ⊆ [n− 1] is the set of k – 1 actions maximizing f. Using δ � ε=2 then
yields f̂ (S) ≥ (1− ε)f (S∗). By submodularity, f (S∗) ≥ (k− 1)=k · f (S∗k), and, hence, f (S∗) ≥ (k− 1)=k · f (K) ≥ (k− 1)=k · uS(φ∗).

The following proposition summarizes the main insight from this section.

Proposition 4. For every k ≥ 2 and every constant ε > 0, there is a polynomial-time algorithm to compute a subset S
of k – 1 actions such that

f (S) ≥ (1− ε) · 1− 1
k

( )
· uS(φ∗):

Combining the algorithm for selection of S with ComputeSignal, we obtain a signaling scheme that we term
the improved independent scheme. Proposition 4 together with Lemmas 7 and 8 implies Theorem 5.

Let us now describe the algorithm and the guarantee in Proposition 4 in more detail. We first apply a discreti-
zation, for which we need to solve LP (3) a total of at most O(nk=ε) times. The subsequent FPTAS procedure
needs O(n2k6=ε3) time which, arguably, seems rather high. Our goal here was to simplify the exposition and the
analysis of the FPTAS as much as possible. It is an interesting direction for future work to improve the running
time in terms of the dependence on k and ε.

4.2.1. Discretization. For approximating f, we consider approximating the function f̂ . The definition of f̂ is the
same as for f in (2), where we add a discretization constraint that zi ∈ {0,τ, 2τ, 3τ, : : : ,τ(1=τ− 1), 1}
with τ � 1=�k=δ�.
Lemma 9. Consider the subset S∗ ⊆ [n− 1] that maximizes f (S∗). It holds that f̂ (S∗) ≥ (1− δ)f (S∗).
Proof. Because (2) is a packing problem, we can assume w.l.o.g. that |S∗ | � k− 1. We denote by z∗ the optimal so-
lution for f (S∗) in (2). For zi

′ � (1− δ)z∗i , concavity and monotonicity of gi implies gi(zi′) ≥ (1− δ)gi(z∗i ) for every
i ∈ S∗ ∪ {n}. Observe that ∑

i∈S∗∪{n}zi′ ≤ (1− δ) because z∗ is a feasible solution. We round zi
′ up to the next multiple

of τ, that is, ẑi � τ · �zi′=τ�. Then ∑
i∈S∗∪{n}

ẑi ≤
∑

i∈S∗∪{n}
zi
′ + τ ≤ (1− δ) + k · 1

�k=δ� ≤ 1:

Now ẑ is a feasible solution for the optimization problem of f̂ (S), so

f̂ (S) ≥ ∑
i∈S∗∪{n}

gi(ẑi) ≥
∑

i∈S∗∪{n}
gi(zi′)

≥ (1− δ) ∑
i∈S∗∪{n}

gi(z∗i ) � (1− δ)f (S∗):

We rephrase the optimization problem of f̂ (S) as having 1=τ many particles that can be assigned to the actions
S ∪ {n}. The ℓ th particle assigned to action i has marginal profit mℓ

i � gi(ℓτ) − gi((ℓ− 1)τ). For every action i, the
marginal profit of the ℓth assigned particle is mℓ

i ≥ 0 and mℓ+1
i ≤mℓ

i , for all ℓ ≥ 1. Clearly, the optimal solution for
f̂ (S) can be computed by a simple greedy algorithm: Assign the 1=τ particles to actions S ∪ {n} in nonincreasing
order of marginal profit. Consider the set Ŝ

∗
that optimizes f̂ (S) over all subsets S of size at most k – 1. Let m∗ be

the profit of the last particle assigned by the greedy algorithm to any action in Ŝ
∗ ∪ {n}.

Our main idea in the FPTAS is to guess m∗. Put differently, we run the algorithm discussed in the following for
all marginal profits from all particles of all functions gi, i ∈ [n]. Because only 1=τ particles must be considered for
any action, we have at most n=τ �O(nk=δ) calls to the algorithm. For the rest of this section, we outline our ap-
proach for a given marginal profit value m.
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Given a value m, consider an action i. We denote by ℓi(m) the largest number of a particle with marginal
profit strictly larger than m. Suppose that i ∈ Ŝ

∗
and m �m∗. Then, in f̂ (Ŝ∗), we will assign at least zi ≥ τℓi(m)

to action i. With foresight, we use the notation wr
i (m) � τ · ℓi(m) and pri (m) � gi(τℓi(m)). Suppose i has particles

ℓi(m) + 1, ℓi(m) + 2, : : : ,ℓi(m) + ti(m) with marginal profit m; then f̂ assigns a mass of zi ∈ [τℓi(m),τ(ℓi(m) +
ti(m))]. We use the notation wo

i (m) � τ · ti(m) and poi (m) �m · τ · ti(m) �m ·wo
i (m). Otherwise, if gi has no parti-

cle with marginal profit m, then zi � τℓi(m), and we set wo
i (m) � poi (m) � 0. With this notation, we can express

f̂ (Ŝ∗) by
f̂ (Ŝ∗) � ∑

i∈Ŝ∗∪{n}
gi(τℓi(m∗)) +m∗ · ∑

i∈Ŝ∗∪{n}
(zi − τℓi(m∗))

� ∑
i∈Ŝ∗∪{n}

pri (m∗) +m∗ · 1− ∑
i∈Ŝ∗∪{n}

wr
i (m∗)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠:

This means that f̂ distributes a total of 1=τ particles to Ŝ
∗
such that for all functions gi, i ∈ Ŝ

∗ ∪ {n}, we exhaust all
particles from these functions with marginal profit strictly larger than m∗. The remaining particles achieve a mar-
ginal profit of exactly m∗. This implies, in particular, that

0 ≤ 1− ∑
i∈Ŝ∗∪{n}

wr
i (m∗) ≤ ∑

i∈Ŝ∗∪{n}
wo

i (m∗): (5)

4.2.2. Knapsack Problem. Consider the following integer optimization problem for a given marginal profit value
m. We strive to find a subset S of at most k – 1 actions such that 1=τ particles can be assigned with a marginal
profit of at least m from actions i ∈ S ∪ {n} to maximize the resulting total profit:

h(m) �Max:
∑n
i�1

yipri (m) +min m−m
∑n
i�1

yiwr
i (m),∑n

i�1
yipoi (m)

( )
,

s:t:
∑n
i�1

yiwr
i (m) ≤ 1,

∑n−1
i�1

yi ≤ k− 1,

yn � 1,
yi ∈ {0, 1}: (6)

For given m, we denote the optimal solution for h(m) by y∗ and the action set optimizing h(m) by
S∗m � {i | y∗i � 1, i≠ n}.
Lemma 10. For every marginal profit m, the following hold:

a. If h(m) is feasible, then h(m) ≤ f̂ (Ŝ∗).
b. If m �m∗, then h(m∗) is feasible and h(m∗) � f̂ (Ŝ∗).
c. If h(m) is infeasible, then m≠m∗.

The definition of h above in (6) describes the greedy algorithm for distributing particles with marginal profit
rate at least m. Together with (5), we can show part a using this observation. The remaining properties, b and c,
can then quickly be verified.

Proof. In h, we sum the value from each action i ∈ S∗m for the required assignment of particles to arrive at margin-
al profit m, and then use the remaining particles to generate additional value at a rate of m. Consider any margin-
al profit m and a feasible solution y for h(m) with action set S � {i | yi � 1, i≠ n}. If S satisfies (5), then h(m) � f̂ (S),
because h correctly captures the greedy algorithm to assign particles to gi in nonincreasing order of marginal
profit. However, there might be values m and solutions y, such that for the corresponding set S ∪ {n} of actions it
is impossible to find a total of 1=τ particles with marginal profit at least m. Clearly, if this happens, then∑

i∈S∪{n}
wr

i (m) + ∑
i∈S∪{n}

wo
i (m) < 1:
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This implies, in particular, that either m≠m∗ or S≠ Ŝ
∗
, because otherwise we would violate (5). Moreover, in

h the set S only yields a value of

∑
i∈S∪{n}

pri (m) +min m−m
∑

i∈S∪{n}
wr

i (m), ∑
i∈S∪{n}

poi (m)
( )

� ∑
i∈S∪{n}

pri (m) + ∑
i∈S∪{n}

poi (m),

that is, it only sums up the value generated by particles with marginal profit at least m. In contrast, in f̂ (S), we
would continue the greedy algorithm and assign particles beyond the ones with marginal profit at least m. This
holds in particular for S � S∗m, so h(m) ≤ f̂ (S∗m). Because f̂ (S∗m) ≤ f̂ (Ŝ∗), this proves part a.

It is straightforward to verify that form∗ and the optimal set Ŝ
∗
, the conditions in (5) guarantee that h(m∗) is fea-

sible. Moreover, (5) implies that in the objective function,

min m∗ −m∗ ∑
i∈Ŝ∗∪{n}

wr
i (m∗), ∑

i∈Ŝ∗∪{n}
poi (m∗)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�m∗ 1− ∑
i∈Ŝ∗∪{n}

wr
i (m∗)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠:

This implies that h(m∗) � f (Ŝ∗), and part b follows.
If h(m) is infeasible, then for every subset S ⊆ [n− 1] with |S| ≤ k− 1 actions, we have∑

i∈S∪{n}
wr

i (m) > 1:

Then m≠m∗ because (5) is violated. This proves part c. w

4.2.3. Dynamic Program. As a consequence of Lemma 10, in order to compute an approximation to f̂ (Ŝ∗) we fo-
cus on approximating h(m) in (6) for every given value m. For convenience, we use a knapsack terminology.
There is an required item for action i with size wr

i (m) and profit pri (m). In addition, there is an optional item with
size wo

i (m) and profit poi (m). The constraints in (6) (with the exception of the trivial constraint yn � 1) exactly repre-
sent the constraint set of the 1.5-dimensional knapsack problem (Kellerer et al. [35, section 9.7]).

The objective function can be interpreted as follows. Upon packing a required item of action i into the knap-
sack, we also allow to fill the remaining space in the knapsack with (any fraction of) the optional item of i. Note
that all optional items correspond to particles with marginal profit m. Optional items can be removed to free
space for required items of other actions. Because required items correspond to particles with marginal profit
larger than m, they generate more value per unit of size they occupy in the knapsack. Hence, adding required
items (as long as the constraint set allows it) and removing (parts of) optional ones is always desirable.

For every given m, we now describe an FPTAS to approximate the optimal solution of (6) by (1− δ) in polyno-
mial time, for every constant δ > 0. The approach resembles the standard dynamic programming approach for
the knapsack problem. We assume w.l.o.g. that all required items fit into the knapsack, that is, wr

i (m) ≤ 1 for all
i ∈ [n− 1], because otherwise we can drop the action from consideration.

Consider pmax(m) �max{pri (m),min(m,poi (m)) | i ∈ [n]}, and assume κ � (δ · pmax(m))=2k. We consider the adjust-
ed profits pri � �pri (m)=κ� and poi � �poi (m)=κ�. Our dynamic programming table is given by A(i, j,pr,po)with the in-
terpretation that for this entry we consider a subset of solutions of the following form: (1) the packed required
items are from actions {1, : : : , i,n}, (2) we pack the required items of action n and exactly j of the remaining ac-
tions, (3) the packed required items have a total adjusted profit of pr, and (4) the adjusted profit of optional items
corresponding to packed required items sums to po. For each entry A(i, j,pr,po), we store the minimum total size
of required items of any solution that fulfills the conditions of this entry. The number of possible table entries is
O(n · k5=δ2), which is a polynomial number in n and k. We initialize all entries with ∞. Then the base cases of the
recursion are

A(0, 0,prn,pon) � wr
n and A(0, 0,x,y) � ∞,

for every x,y ∈ {0, 1, : : : , k · �k=δ�}, (x,y)≠ (prn,pon):
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We fill the table in increasing order of the parameters by setting

A(i, j, pr, po) � min
A(i − 1, j, pr, po),
wr

i + A(i − 1, j − 1, pr − pri , p
o − poi )

{ }
,

where we assume the entry is ∞ whenever the arguments become negative. Clearly, this recursion allows us to
fill the table in time linear in the size of the table. As in the standard knapsack problem, the recursion simply dis-
tinguishes between packing the required item of action i into the knapsack or not.

The rationale behind this approach is as follows. Consider the set of solutions represented by A(i, j,pr,po).
Clearly, when we have pr adjusted profit from packed required items and a potential adjusted profit of po from
optional items, the best solution is one that minimizes the size of packed required items to allow for a maximum
portion of optional items to be included into the knapsack.

After completing the table, we consider all entries with A(i, j,pr,po) ≤ 1, because these entries correspond to a
feasible solution. From each of these entries, we pick the one that maximizes the adjusted profit
κ · pr +min(m−m ·A(i, j,pr,po),κ · po).

4.2.4. Approximation Ratio. Consider the adjusted profit of the optimal solution S∗m, which is

∑
i∈S∗m∪{n}

κpri +min m−m · ∑
i∈S∗m∪{n}

wr
i ,

∑
i∈S∗m∪{n}

κpoi

( )

≥ h(m) − 2kκ � h(m) − δpmax:

If pmax is attained for a profit of a required item pri , then consider packing only the required item i. This is a fea-
sible solution because wr

i ≤ 1. Otherwise, suppose pmax is attained for an entry min(m,poi (m)). We use
min(m,poi (m)) in the definition of pmax, because the optional item is not assumed to fit into the knapsack complete-
ly, and m · 1 is the profit of a knapsack filled completely with any set of (parts of) optional items. Now suppose
we pack only the optional item of i (or parts of it until the knapsack is full). Then pack the required item of i,
thereby possibly replacing parts of the optional item. This is a feasible solution because wr

i (m) ≤ 1. The replace-
ment increases the profit over min(m,poi (m)). Overall, these observations imply h(m) ≥ pmax.

The dynamic program computes a solution S′ with the best adjusted profit. The profit of S′ is more than the
adjusted profit, which is more than the adjusted profit of S∗m, which is more than h(m) − δpmax. Because
h(m) ≥ pmax, the profit of S′ is at least (1− δ) · h(m).

Because we run the dynamic program for all marginal profits of particles, the best solution S that is found
overall has value f (S) ≥ f̂ (S) ≥ (1− δ)h(m∗) � (1− δ)f̂ (Ŝ∗) ≥ (1− δ)2f (S∗) � (1− ε)f (S∗) because of Lemmas 9 and 10.

4.3. Beyond .E-Optimality
Let us briefly observe that our approach does not easily translate to independent instances without �E-optimality.
Consider the following example. There are n � 2 actions and k � 2 signals. Action 1 has deterministic type Θ1 �
{θ11} with (ξ11,�11) � (1, 0). Action 2 has types Θ2 � {θ21,θ22} with (ξ21,�21) � (0, 1) and (ξ22,�22) � (0, 0), and
q21 � q22 � 1=2. Note �E � 1=2 for action 2.

The optimal scheme φ∗ recommends action 1 in state (θ11,θ22) and action 2 in state (θ11,θ21). In the former
case,R has conditional expectation of zero for each of the actions, so action 1 is a best response. In the latter case,
the recommended action is optimal forR. The expected utility for S in φ∗ is 1/2.

Instead, suppose we solve LP (2). Because the constraints in (3) require a conditional expectation of �E for ev-
ery signal, the optimal solution is x∗21 � x∗22 � 1=2, and thus g1(z∗) � g2(z∗) � 0. Hence, the optimal value of the LP
is zero. Clearly, the optimal scheme does not give rise to a feasible LP solution, and the optimal LP-value does
not upper bound the expected utility of φ∗ for S.

More fundamentally, any positive value for S results from R taking action 1, which in turn must be inherently
correlated with the state of action 2. This correlation is not sufficiently reflected in the LP or the algorithms above,
which exploit independence conditions. Obtaining a constant-factor approximation for general independent in-
stances in polynomial time is an interesting open problem.
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5. Approximation by Restricted Signals
Let OPTk denote the expected sender utility of the optimal scheme with k signals. We quantify the performance
loss against a case when the sender has (at least) n signals available and achieves OPTn.

5.1. Symmetric Instances
We define the imitation scheme φImi for any symmetric instance with n actions and k signals. It first runs an opti-
mal symmetric scheme φ∗

n for n signals. Let i be the action chosen by φ∗
n. If i ∈ [k], we signal action i; otherwise,

we signal any action chosen uniformly at random from [k].
The running time of φImi is determined by the running time to implement an optimal symmetric scheme for n

signals. In particular, such a scheme can be computed with the Slope-Algorithm, so an efficient probability oracle
is sufficient for polynomial running time of φImi. We now show that φImi provides a tight approximation ratio in
terms of OPTn.

Proposition 5. The imitation scheme is symmetric, direct, and persuasive in symmetric instances. For every k ≥ 2, it holds
that uS(φImi) ≥ k=n ·OPTn. There exists a random-order instance such that OPTk ≤ k=n ·OPTn.

Proof. We first prove the result for the imitation scheme. The optimal scheme φ∗
n is symmetric. If φImi deviates

from the recommendation of φ∗
n, it recommends a uniform random action in [k]. Hence, φImi is also symmetric.

Conditioned on action i being recommended by φImi, the type distribution of action i is Dyes from φ∗
n with prob-

ability k/n or Dno from φ∗
n with probability (n− k)=n. If an action i ∈ [k] is not recommended, the type distribution

is Dno from φ∗
n, no matter which action j ∈ [k] is recommended. Let �yes and �no be the expected utilities of R in

Dyes and Dno from φ∗
n, respectively. In φImi, the expected utility forR for any given action i ∈ [k]must satisfy

1
k

k
n
· �yes +

n− k
n

· �no
( )

+ k− 1
k

· �no � �E:

Because �no ≤ �E, the expected utility for R when following a recommended action in φImi can be bounded by
k=n · �yes + (n− k)=n · �no ≥ �E. By Lemma 3 we see that φImi is persuasive.

The optimal scheme φ∗
n is symmetric and recommends each action with probability 1=n. With probability k/n,

φImi recommends the same action as φ∗
n, so uS(φImi) ≥ k=n ·OPTn.

For the upper bound on OPTk, we consider an instance from the random-order scenario. There are n types.
Type θ1 has utility pair (1, 1), and all n – 1 remaining types have utility pair (0, 0). Obviously, OPTn � 1, the send-
er gives a signal for the action with type 1. With k signals, there is an optimal scheme that recommends only the
first k actions. With probability k/n, type 1 is among those k actions. Otherwise, type 1 cannot be recommended.
Hence, OPTk ≤ k=n, which completes the proof. w

5.2. Independent Instances
The first lemma shows that there are independent (and symmetric) instances such that the best approximation
ratio is in O(k=n).
Lemma 11. There exists an i.i.d. instance such that OPTk ≤ e=(e− 1) · k=n ·OPTn.

Proof. In the distribution for every action, there is a good type θ1 with utility pair (1, 1) and qθ1 � 1=n, and a bad
type θ0 with utility pair (0, 0) and qθ0 � 1− 1=n. Clearly, the optimal mechanism is to signal an action with θ1
whenever it exists (within the first k actions). This yields a ratio of

OPTk

OPTn
�
1− 1− 1

n

( )k
1− 1− 1

n

( )n �
k=n−∑k

i�2
k
i

( )
−1
n

( )i
1−∑k

i�2
n
i

( )
−1
n

( )i :

This ratio is at most e=(e− 1) · k=n, for all k ∈ {2, : : : ,n}, where e=(e− 1) ≈ 1:58. To see this, observe

OPTk ≥ k
k+ 1

·OPTk+1,
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because the left-hand side is a lower bound on the sender utility when using φImi for k signals based on the opti-
mal i.i.d. scheme for k + 1 signals. Hence,

OPTk

k
≥OPTk+1

k+ 1
:

Therefore, for all k � 2, : : : ,n, we have OPTk=k ≤OPT1=1 �OPT1 � 1=n, that is,

OPTk

OPTn

/
k
n
� n
OPTn

·OPTk

k
≤ 1
OPTn

� 1

1− 1− 1
n

( )n :
The factor is monotone in n and grows to 1=(1− 1=e) � e=(e− 1). w

Note that all symmetric instances satisfy �E-optimality, because symmetric schemes always guarantee an
expected utility of at least �E conditioned on a recommendation. Hence, the i.i.d. instance used in the proof of
Lemma 11 above also shows an upper bound for instances satisfying �E-optimality.

To provide an asymptotically tight bound of Ω(k=n) for �E-optimal instances, we consider the independent-
imitation scheme. Similar to the schemes in Sections 4.1 and 4.2 above, it consists of the two steps of (a) choosing
a suitable subset of actions and (b) computing a good direct signaling scheme for the chosen subset of actions. In
the independent-imitation scheme, we use ActionsReduce (Algorithm 4) for step (a) and ComputeSignal (Algo-
rithm 3) for step (b) as above. Because the main computational step in both algorithms is to solve a single linear
program, the scheme can be implemented in polynomial time.

Algorithm 4 (ActionsReduce)
Input: Type sets Θ1, : : : ,Θn and distributions q1, : : : ,qn, s.t.

∑
jqn,j�nj � �E and

∑
jqn,jξnj �maxi∈[n] :∑

jqi,j�ij � �E
∑

jqi,jξij, parameter 2 ≤ k ≤ n

1. Compute f ([n− 1])
2. For every i ∈ [n], let z∗i be the values of the optimal solution in f ([n− 1])
3. Let S be the set of the k – 1 actions from [n− 1]with largest values gi(z∗i )
4. return S

Theorem 6. The independent-imitation scheme is direct and persuasive for independent �E-optimal instances with k sig-
nals. It can be implemented in time polynomial in the input size. For every k ≥ 2,

uS(φImiIS) ≥ 1− 1− 1
k

( )k( )
· 1− 1

k

( )
· k
n
·OPTn:

Proof. Following (2) we observed that f (S) ≥ uS(φ∗
S∪{n}), so in particular, f ([n− 1]) ≥OPTn. For every action i ∈

[n− 1] and every type j ∈Θi, let z∗i and x∗ij be the values of the optimal LP solution for f ([n− 1]). It is straightfor-
ward to verify that for every subset S, the values (z∗i )i∈S∪{n} and (x∗ij)i∈S∪{n},j∈Θi

constitute a feasible solution for the
LP when optimizing f(S). Because ActionsReduce chooses S to contain the k – 1 actions with largest gi(z∗i ),

f (S) ≥ ∑
i∈S∪{n}

gi(z∗i ) ≥
k− 1
n

· f ([n− 1])

≥ 1− 1
k

( )
· k
n
·OPTn:

The approximation ratio now follows using Lemma 7. By Lemma 8, the resulting signaling scheme is direct
and persuasive. w

Endnotes
1 This is a standard assumption in bilevel optimization problems. It is mainly used to avoid technicalities such as tiny perturbations to break
ties.
2 Another way to think about symmetric instances is thatΘi �Θj for all i, j ∈ [n].
3 Consider a set S ∪ {n} consisting of k i.i.d. actions. Every action i ∈ S ∪ {n} has two possible types Θi � {θ1,θ0}, where
(�(θ1),ξ(θ1)) � (1, 1), qθ1 � 1=k, and (�(θ0),ξ(θ0)) � (0, 0). Observe that f(S) � 1. The best persuasive scheme recommends an action with type
θ1 whenever there is one, which happens only with probability 1− (1− 1=k)k.
4 An extended abstract of this paper is included in the proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (Gradwohl
et al. [29]).
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[39] Küçükgül C, Özer Ö, Wang S (2022) Engineering social learning: Information design of time-locked sales campaigns for online platforms.

Management Sci., ePub ahead of print November 19, https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2021.4151.
[40] Le Treust M, Tomala T (2019) Persuasion with limited communication capacity. J. Econom. Theory 184:104940.
[41] Li F, Norman P (2018) On Bayesian persuasion with multiple senders. Econom. Lett. 170:66–70.
[42] Lingenbrink D, Iyer K (2018) Signaling in online retail: Efficacy of public signals. Preprint, submitted May 26, http://dx.doi.org/10.2139/

ssrn.3179262.

Gradwohl et al.: Algorithms for Persuasion with Limited Communication
Mathematics of Operations Research, Articles in Advance, pp. 1–26, © 2022 INFORMS 25

https://arxiv.org/abs/2005.07253
https://arxiv.org/abs/1910.13547
https://www.aeaweb.org/articles?id=10.1257/mic.20200399&amp;&amp;from=f
https://arxiv.org/abs/1911.09256
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2021.4151
http://dx.doi.org/10.2139/ssrn.3179262
http://dx.doi.org/10.2139/ssrn.3179262


[43] Lingenbrink D, Iyer K (2019) Optimal signaling mechanisms in unobservable queues. Oper. Res. 67(5):1397–1416.
[44] Nemhauser G, Wolsey L, Fisher M (1978) An analysis of approximations for maximizing submodular set functions—I. Math. Program-

ming 14:265–294.
[45] Papanastasiou Y, Bimpikis K, Savva N (2018) Crowdsourcing exploration. Management Sci. 64(4):1727–1746.
[46] Rabinovich Z, Jiang AX, Jain M, Xu H (2015) Information disclosure as a means to security. Weiss G, Yolum P, Bordini RH, Elkind E,

eds. Proc. 14th Conf. Autonomous Agents Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC), 645–653.

[47] Rubinstein A (2017) Honest signaling in zero-sum games is hard, and lying is even harder. Chatzigiannakis I, Indyk P, Kuhn F, Muscholl
A, eds. Proc. 44th Internat. Colloquium Automata, Languages, Programming (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany), 77:1–77:13.

[48] Wardrop JG (1952) Road paper. Some theoretical aspects of road traffic research. Proc. Inst. Civil Engineers 1(3):325–362.
[49] Xu H (2020) On the tractability of public persuasion with no externalities. Chawla S, ed. Proc. 30th ACM-SIAM Sympos. Discrete Algorithms

(Society for Industrial and Applied Mathematics, Philadelphia), 2708–2727.
[50] Xu H, Rabinovich Z, Dughmi S, Tambe M (2015) Exploring information asymmetry in two-stage security games. Bonet B, Koenig S, eds.

Proc. 29th Conf. Artificial Intelligence (Association for the Advancement of Artificial Intelligence, Menlo Park, CA), 1057–1063.
[51] Xu H, Freeman R, Conitzer V, Dughmi S, Tambe M (2016) Signaling in Bayesian Stackelberg games. Jonker CM, Marsella S, Thangarajah

J, Tuyls K, eds. Proc. 15th Conf. Autonomous Agents Multiagent Systems (International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC), 150–158.

Gradwohl et al.: Algorithms for Persuasion with Limited Communication
26 Mathematics of Operations Research, Articles in Advance, pp. 1–26, © 2022 INFORMS


	s1
	s1A
	s1B
	s1C
	s2
	s2A
	s2B
	s2C
	s2D
	s3
	s3A
	s3B
	s3C
	s3C1
	s3C1a
	s3C1b
	s3C1c
	s3C2
	s3C2d
	s3C2e
	s3D
	s3E
	s4
	s4A
	s4B
	s4B1
	s4B2
	s4B3
	s4B4
	s4C
	s5
	s5A
	s5B

